The degree of ototoxic drug sensitivity and hair cell repair was determined in the chinchilla horizontal crista ampullaris after intraotic administration of gentamicin. Histological evaluation was made of 22 cristae ampullaris from one normal and six post-treatment (PT) animal groups killed at 1, 4, 7, 14, 28, and 56 days. New hair cell production was quantified, using the dissector technique. Transmission electron microscopy was used to investigate the ultrastructural characteristics of the hair cells in the regenerated epithelium. At 1 day PT, type I and II hair cells presented cytoplasmic vacuolization, swollen nerve calyces and 20% of type I and 18% of type II hair cells were lost. At 4 days PT, 95% of type I hair cells and 14% of type II hair cells had disappeared. In addition, most of the type II hair cells showed clumping of nuclear material. Nerve fibers were not found in the sensory epithelium, but were still observed below the basal lamina. Supporting cells appeared unaffected, maintaining their location in the crista. At 1 and 4 days PT, the damage to hair cells was more pronounced in the central region of the crista ampullaris. The degree of ototoxic damage at 7 days was similar to that of 14 days: no type I hair cells were present and most of the type II hair cells had disappeared; supporting cell nuclei began to occupy the apical part of the sensory epithelium and most of the nerve fibers had retracted. Quantitatively, 87 and 93% of type II hair cells were lost at 7 and 14 days PT, respectively. Initial signs of hair cell recovery began at 28 days PT; immature type II-like hair cells appeared, supporting cell nuclei began to align at the base of the sensory epithelium and nerve fibers penetrating the basal lamina were observed. No type I hair cells were found, but 40% of the normal number of type II hair cells were present. Hair cells appeared to regenerate in the peripheral areas of the cristae ampullaris first. At 56 days PT, an increase in the number of mature type II hair cells was present, supporting cells were aligned at the base of the epithelium, and more nerve fibers appeared to penetrate the basal lamina to the sensory epithelium. Although type I hair cells were absent from the epithelium 55% of the normal number of type II hair cells were present. At this time, more regenerated hair cells were located in the center of the cristae ampullaris as compared to the periphery. At the transmission electron microscopic level, type II hair cells at different stages of maturation were observed. Some exhibited mature stereocilia, a cuticular plate, and terminal endings with synaptic specialization opposing these hair cells. In conclusion, type I hair cells were more sensitive than type II hair cells to gentamicin intoxication (as they disappeared as early as 4 days PT). After 56 days PT, the number of type II hair cells reached 55% of normal. No type I hair cells had regenerated at this time. These results demonstrate quantitatively the differential ototoxic sensitivity and regenerative capacity of hair cells.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0736-5748(96)00103-7DOI Listing

Publication Analysis

Top Keywords

hair cells
100
type hair
72
hair
29
cells
27
type
20
hair cell
16
nerve fibers
16
sensory epithelium
16
crista ampullaris
12
cristae ampullaris
12

Similar Publications

Pathogenesis and regenerative therapy in vitiligo and alopecia areata: focus on hair follicle.

Front Med (Lausanne)

January 2025

Department of Dermatology, Institute of Regenerative Medicine, Affiliated Hospital of Jiangsu University, Zhenjiang, China.

Vitiligo is an autoimmune disease characterized by the loss of functional melanocytes in the hair follicles and epidermis, leading to white patches on the skin and mucous membranes. Alopecia areata (AA) is a common immune-mediated condition in which autoimmune attack on hair follicles cause non-scarring hair loss. Both diseases significantly impact patients's physical and mental health.

View Article and Find Full Text PDF

Systemic lupus erythematosus (SLE) is a chronic autoimmune disease with a complex etiology primarily linked to abnormalities in B lymphocytes within the human body, resulting in the production of numerous pathogenic autoantibodies. Telitacicept is a relatively novel humanized, recombinant transmembrane activator, calcium modulator and cyclophilin ligand interactor fused with the Fc portion (TACI-Fc). It works by competitively inhibiting the TACI site, neutralizing the activity of B-cell lymphocyte stimulator and A proliferation-inducing ligand.

View Article and Find Full Text PDF

A 53-year-old woman undergoing combination therapy with epidermal growth factor receptor (EGFR) and vascular endothelial growth factor receptor (VEGFR) inhibitors for advanced lung cancer with brain metastases developed pustules and punctate purpura on both lower extremities. Histopathological examination revealed neutrophilic infiltration around the hair follicles and erythrocyte extravasation in the perivascular regions near the hair roots, leading to a diagnosis of purpuric papulopustular eruptions. The rash improved with oral doxycycline (100 mg/day) and topical corticosteroids.

View Article and Find Full Text PDF

Fetal fibroblast heterogeneity defines dermal architecture during human embryonic skin development.

J Invest Dermatol

January 2025

Centre for Gene Therapy and Regenerative Medicine, King's College London, Guy's Hospital, Great Maze Pond, London, UK; Directors' Unit, EMBL, Meyerhofstr. 1, 69117 Heidelberg, Germany. Electronic address: https://twitter.com/fionamarywatt.

To investigate heterogeneity of fibroblasts in human fetal skin, we analysed published single-cell RNA sequencing data (8 and 16 post conception weeks (PCW)) and performed single-molecule fluorescence in situ hybridisation to map their spatial distribution and predicted dynamic interactions. Clustering revealed 8 fibroblast populations with developmental stage-specific abundance changes. Proliferative cells (MKI67+) were present at all stages.

View Article and Find Full Text PDF

Sphingolipids serve as building blocks of membranes to ensure subcellular compartmentalization and facilitate intercellular communication. How cell type-specific lipid compositions are achieved and what is their functional significance in tissue morphogenesis and maintenance has remained unclear. Here, we identify a stem cell-specific role for ceramide synthase 4 (CerS4) in orchestrating fate decisions in skin epidermis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!