The monosialoganglioside GM1 is a compound with neurotrophic properties found to foster functional recovery in various paradigms of brain damage. The present experiment examined whether systemic treatment with GM1 may facilitate behavioral recovery in rats with fimbria-fornix lesions and intrahippocampal grafts rich in cholinergic neurons. Among 68 Long-Evans female rats, 46 sustained a bilateral electrolytic lesion of the fimbria and the dorsal fornix and 22 were sham-operated. Fourteen days later, half the lesioned rats were subjected to intrahippocampal grafts of a fetal septal cell suspension. Starting a few hours after lesion surgery and over a 2-month period, half the rats of each surgical treatment group received a daily injection of GM1 (30 mg/kg i.p.), the other half being injected with saline as a control. All rats were subsequently tested for locomotor activity and radial maze learning. The lesions induced locomotor hyperactivity and impaired learning performances in both an uninterrupted and an interrupted radial maze testing procedure. In all rats with surviving grafts, the grafts had provided the hippocampus with a new and dense organotypic acetylcholinesterase-positive innervation pattern which did not differ between saline- and GM1-treated subjects. The scores/performances of the rats that had received only the grafts or only the GM1 treatment did not differ significantly from those of their respective lesion-only counterparts. However, in the radial-arm maze task, the grafted rats given GM1 showed improved learning performances as compared with their saline-treated counterparts: they used more efficient visit patterns under the uninterrupted testing conditions and made fewer errors under the interrupted ones. The results suggest that GM1 treatment or intrahippocampal grafts used separately do not attenuate the lesion-induced behavioral deficits measured in this experiment. However, when GM1 treatment and grafts are used conjointly, both may interact in a manner allowing part of these deficits to be attenuated.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/pl00005722 | DOI Listing |
Epilepsy Behav
October 2024
Neurophysiology and Neurochemistry of Neuronal Excitability and Synaptic Plasticity Laboratory, Department of Biochemistry, ICBS, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Graduate Program in Neuroscience, ICBS, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Graduate Program in Biological Science: Biochemistry, Department of Biochemistry, ICBS, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil. Electronic address:
Cell replacement therapies using medial ganglionic eminence (MGE)-derived GABAergic precursors reduce seizures by restoring inhibition in animal models of epilepsy. However, how MGE-derived cells affect abnormal neuronal networks and consequently brain oscillations to reduce ictogenesis is still under investigation. We performed quantitative analysis of pre-ictal local field potentials (LFP) of cortical and hippocampal CA1 areas recorded in vivo in the pilocarpine rat model of epilepsy, with or without intrahippocampal MGE-precursor grafts (PILO and PILO+MGE groups, respectively).
View Article and Find Full Text PDFMetab Brain Dis
December 2023
Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
Cell Stem Cell
October 2023
Neurona Therapeutics Inc., South San Francisco, CA 94080, USA. Electronic address:
Mesial temporal lobe epilepsy (MTLE) is the most common focal epilepsy. One-third of patients have drug-refractory seizures and are left with suboptimal therapeutic options such as brain tissue-destructive surgery. Here, we report the development and characterization of a cell therapy alternative for drug-resistant MTLE, which is derived from a human embryonic stem cell line and comprises cryopreserved, post-mitotic, medial ganglionic eminence (MGE) pallial-type GABAergic interneurons.
View Article and Find Full Text PDFBiochem Biophys Res Commun
October 2023
Department of Clinical Biochemistry, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; Department of Physiology, School of Medicine, Persian Gulf Physiology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran. Electronic address:
Aim: Mesenchymal stem cells (MSCs) have emerged as an intriguing candidate in cell therapy for treating neurodegenerative diseases, including Alzheimer's disease (AD). To achieve the maximum efficiency of cell therapy, determining the optimal dose of MSCs is essential. This study was conducted to assess the dose-dependent therapeutic response of MSCs against pathological and behavioral AD-associated alterations.
View Article and Find Full Text PDFBiochem Biophys Res Commun
September 2023
Department of Clinical Biochemistry, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; Persian Gulf Physiology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran. Electronic address:
Aim: Transplantation of mesenchymal stem cell (MSC) has been suggested to be a promising method for treating neurodegenerative conditions, including Alzheimer's disease (AD). However, the poor survival rate of transplanted MSCs has limited their therapeutic application. This study aimed to evaluate whether preconditioning MSCs with dimethyl fumarate (DMF), a Nrf2 inducer, could enhance MSC therapeutic efficacy in an amyloid-β (Aβ)-induced AD rat model.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!