A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Long circulating biodegradable poly(phosphazene) nanoparticles surface modified with poly(phosphazene)-poly(ethylene oxide) copolymer. | LitMetric

The biodistribution of biodegradable poly(organo phosphazene) nanoparticles surface modified by adsorption of a novel poly(organo phosphazene)-poly(ethylene oxide) copolymer with a 5000 M(W) PEO chain (PF-PEO[5000]), following intravenous administration in rats and rabbits, is described. The data are compared to the biodistribution of poly(organo phosphazene) and poly(lactide-co-glycolide) nanoparticles coated with a tetrafunctional copolymer of poly(ethylene oxide)-poly(propylene oxide) ethylenediamine, commercially available as Poloxamine 908. This copolymer has a PEO chain of the same size as the poly(organo phosphazene)-PEO derivative used. The results in the rat model reveal that poly(organo phosphazene) nanoparticles with a Poloxamine 908 coating were mainly captured by the liver, although a retardation in clearance from the systemic circulation was seen. In contrast, the poly(organo phosphazene) nanoparticles coated with PF-PEO(5000) showed a prolonged blood circulating profile, with only a small amount of the nanoparticles sequestered by the liver. This indicates the importance of the nature of both the anchoring group and the particle surface on the biological performances of the system. Study of the biodistribution of the PF-PEO(5000)-coated poly(organo phosphazene) nanoparticles in the rabbit model also indicated a prolonged systemic circulation lifetime and reduced liver uptake, whereby a significant amount of the administered nanoparticles was targeted to the bone marrow.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0142-9612(97)00052-5DOI Listing

Publication Analysis

Top Keywords

polyorgano phosphazene
20
phosphazene nanoparticles
16
nanoparticles
8
nanoparticles surface
8
surface modified
8
oxide copolymer
8
peo chain
8
nanoparticles coated
8
poloxamine 908
8
systemic circulation
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!