Hereditary spherocytosis (HS) is due to different membrane protein defects (i.e., deficiency of spectrin and ankyrin, band 3, or band 4.2). In order to gain new insight into the relationships between band 3 function and proteins associated with the cytoskeleton, we studied erythrocyte anion transport activity in HS characterized by different membrane protein defects. Anion transport activity was increased in HS due to partial band 4.2 deficiency or to band 4.2 absence, while in HS associated with deficiency of spectrin + ankyrin or band 3, the anion transport results were normal or decreased, respectively. Moreover, since HS erythrocytes are characterized by an increased Na and a decreased K, we studied the principal membrane cation transport pathways. Activity of the Na/K pump was increased in all HS studied, while no changes in Na/K/2Cl cotransport and Na/Li exchange were evident between control and HS as well as between forms of HS associated with different membrane protein defects. K/Cl cotransport activity was decreased in all HS studied compared to normal red cells. In all HS, passive membrane permeability to Na and K was increased compared to normal erythrocytes. The increased Na and the low K content can be attributed to the abnormal membrane permeability to cations, which is not related to a specific membrane protein defect.

Download full-text PDF

Source
http://dx.doi.org/10.1002/(sici)1096-8652(199707)55:3<121::aid-ajh1>3.0.co;2-uDOI Listing

Publication Analysis

Top Keywords

membrane protein
20
anion transport
16
protein defects
16
membrane
9
membrane cation
8
hereditary spherocytosis
8
deficiency spectrin
8
spectrin ankyrin
8
ankyrin band
8
transport activity
8

Similar Publications

Plants produce defensive toxins to deter herbivores. In response, some specialized herbivores evolved resistance and even the capacity to sequester toxins, affecting interactions at higher trophic levels. Here, we test the hypothesis that potential natural enemies of specialized herbivores are differentially affected by plant toxins depending on their level of adaptation to the plant-herbivore system.

View Article and Find Full Text PDF

The specific pathogeneses of schizophrenia (SCZ) remain an enigma despite extensive research that has implicated both genetic and environmental factors. Recent revelations that dysregulated immune system caused by glial cell overactivation result in neuroinflammation, a key player in neurodegenerative as well as neuropsychiatric disorders including SCZ are providing novel clues on potential therapeutic interventions. Here, we review the roles of glial cells (Dr.

View Article and Find Full Text PDF

Keratin/chitosan film promotes wound healing in rats with combined radiation-wound injury.

J Mater Sci Mater Med

January 2025

Department of Nuclear Medicine, Chongqing University Cancer Hospital, No. 181 HanYu St, Shapingba District, Chongqing, 400030, PR China.

Human hair keratin, a natural protein derived from human hair, has emerged prominently in the field of wound repair, showcasing its unique regenerative capabilities and extensive application potential. However, it is a challenge for the keratin to efficiently therapy the impaired wound healing, such as combined radiation-wound injury. Here, we report a keratin/chitosan (KRT/CS) film for skin repair of chronic wounds in in rats with combined radiation-wound injury.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is the most prevalent neurodegenerative disorder characterized by cognitive decline. Despite extensive research, therapeutic options remain limited. Varenicline, an αβ nicotinic acetylcholine receptor agonist, shows promise in enhancing cognitive function.

View Article and Find Full Text PDF

Seipin Deficiency Impairs Motor Coordination in Mice by Compromising Spinal Cord Myelination.

Neuromolecular Med

January 2025

Department of Anatomy, School of Basic Medical Sciences, Shanxi Medical University, No 56, Xinjian Nan Road, Taiyuan, 030001, Shanxi, China.

The integrity of the myelin sheath of the spinal cord (SC) is essential for motor coordination. Seipin is an endoplasmic reticulum transmembrane protein highly expressed in adipose tissue and motor neurons in the SC. It was reported Seipin deficiency induced lipid dysregulation and neurobehavioral deficits, but the underlying mechanism, especially in SC, remains to be elucidated.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!