Using intact rat islets, we previously observed that GTP depletion (achieved through the use of mycophenolic acid or other synthesis inhibitors) impedes nutrient- but not K+-induced insulin secretion. It was concluded that a proximal nutrient-dependent step in stimulus-secretion coupling (but not the process of Ca2+-induced exocytosis itself) is modulated by ambient GTP levels. To examine Ca2+-dependent steps further in intact beta cells, INS-1 cells (which synthesize GTP and ATP similarly to rat islets) and HIT-T15 cells (whose synthesis of purine nucleotides is different) were studied following cell culture for 1-18 hr in various concentrations of mycophenolic acid (MPA) or mizoribine (MZ). Both agents profoundly reduced GTP content (mean: -78%) and lowered the GTP/GDP ratio by an average of -73%; concomitantly, MPA or MZ reduced insulin secretion induced by 10 mM glucose, 30 or 40 mM KCl, or 100 microM tolbutamide, independent of any changes in cell viability, insulin content, ATP content, the ATP/ADP ratio, or cytosolic free Ca2+ concentrations. In INS-1 cells (which appear to have normal nucleobase transport and "salvage" pathway activities), guanine (but not adenine) restored GTP content, the GTP/GDP ratio, and Ca2+-induced secretion. In HIT cells, the phosphoribosylation of exogenous guanine or hypoxanthine is defective; however, provision of 500 microM guanosine (but not adenosine) reversed the effects of MPA. We conclude that, at least in certain situations, a requisite role for GTP in the distal step(s) of exocytosis can be demonstrated.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0006-2952(97)00057-9DOI Listing

Publication Analysis

Top Keywords

insulin secretion
12
beta cells
8
gtp depletion
8
rat islets
8
mycophenolic acid
8
ins-1 cells
8
gtp content
8
gtp/gdp ratio
8
gtp
7
cells
6

Similar Publications

Potential trend of regenerative treatment for type I diabetes has been introduced for more than a decade. However, the technologies regarding insulin-producing cell (IPC) production and transplantation are still being developed. Here, we propose the potential IPC production protocol employing mouse gingival fibroblast-derived induced pluripotent stem cells (mGF-iPSCs) as a resource and the pre-clinical approved subcutaneous IPC transplantation platform for further clinical confirmation study.

View Article and Find Full Text PDF

A simple and effective method to remove pigments from heterologous secretory proteins expressed in Pichia pastoris.

Adv Biotechnol (Singap)

February 2024

CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200030, China.

Pichia pastoris is a popular yeast host for high-level heterologous expression of proteins on an industrial scale owing to its reliable expression, robust growth, high fermentation density, and easy genetic manipulation and cultivation at a relatively low cost. Of particular interest is its high secretion efficiency for small proteins including insulin, human serum albumin, vaccines, enzymes, and llama-derived heavy-chain only antibodies (nanobodies) for pharmaceutical and research applications. However, a recurring challenge in using P.

View Article and Find Full Text PDF

Impaired insulin secretion contributes to the pathogenesis of type 1 diabetes mellitus through autoimmune destruction of pancreatic β-cells and the pathogenesis of severe forms of type 2 diabetes mellitus through β-cell dedifferentiation and other mechanisms. Replenishment of malfunctioning β-cells via islet transplantation has the potential to induce long-term glycemic control in the body. However, this treatment option cannot widely be implemented in clinical due to healthy islet donor shortage.

View Article and Find Full Text PDF

Cows with high body condition scores experience more severe negative energy balance (NEB) and undergo mobilization of more body fat during the peripartum period, leading to more production of nonesterified fatty acids (NEFA) and -hydroxybutyric acid (BHBA). Postpartum insulin secretion is lower, and insulin resistance is stronger in obese cows. Exogenous insulin supplementation has been hypothesized as a key approach for regulating NEFA in these cows.

View Article and Find Full Text PDF

Compared to primary pancreatic islets, insulinoma cell-derived 3D pseudoislets offer a more accessible, consistent, renewable, and widely applicable model system for optimization and mechanistic studies in type 1 diabetes (T1D). Here, we report a simple and efficient method for generating 3D pseudoislets from MIN6 and NIT-1 murine insulinoma cells. These pseudoislets are homogeneous in size and morphology (~150 µm), exhibit functional glucose-stimulated insulin secretion (GSIS) up to 18 days (NIT-1) enabling long-term studies, are produced in high yield [>35,000 Islet Equivalence from 30 ml culture], and are suitable for both and studies, including for encapsulation studies.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!