SECIS elements form stem-loop structures in the 3' untranslated regions (UTR) of eukaryotic mRNAs that encode selenoproteins. These elements direct incorporation of selenocysteine at UGA codons, provided the SECIS element lies a sufficient distance from the UGA. The cDNAs encoding skeletal muscle selenoprotein W from human, rhesus monkey, sheep, rat, and mouse contained highly similar SECIS elements that retained important features common to all known SECIS elements. Comparative analysis of these SECIS elements showed that in some regions both predicted secondary structure and nucleotide sequences were conserved, in other areas secondary structure was maintained using different primary sequence, and in still other portions, base pairing was not conserved. The rodent and sheep selenoprotein W mRNAs used UGA as a stop codon and as a selenocysteine codon. Thus, UGA specified both selenocysteine incorporation and termination in a single mRNA. The selenoprotein W SECIS elements contained an additional highly conserved base-paired stem that may prevent inappropriate selenocysteine incorporation at the UGA stop codons.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0378-1119(97)00113-3DOI Listing

Publication Analysis

Top Keywords

secis elements
24
uga codons
8
secondary structure
8
selenocysteine incorporation
8
secis
7
elements
7
selenocysteine
5
uga
5
conserved
4
conserved features
4

Similar Publications

Rapid Determination of Organic and Inorganic Selenium in Poultry Tissues by Internal Extractive Electrospray Ionization Mass Spectrometry.

Anal Chem

January 2025

The Jiangxi Province Key Laboratory for Diagnosis, Treatment, and Rehabilitation of cancer in Chinese Medicine, Jiangxi University of Chinese Medicine, Nanchang 330004, P. R. China.

An online reactive internal extraction electrospray ionization (iEESI) method was developed for the rapid determination of organic and inorganic speciation information for selenium in poultry tissue samples without complex sample pretreatment. The addition of citric acid as a reducing agent to the internal extraction solvent of methanol/acetic acid (99:1, V/V) for iEESI resulted in the reduction of selenate in the sample to selenite, accompanied by the production of malic acid as an oxidation product. The quantitative analysis of selenate was conducted by using malic acid.

View Article and Find Full Text PDF

Effects of exogenous selenium application on quality characteristics, selenium speciation, and in vitro bioaccessibility of rice pancakes.

Food Chem X

January 2025

Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei Key Laboratory of Industrial Microbiology, School of Life and Health Sciences, Hubei University of Technology, Wuhan, Hubei 430068, PR China.

Selenium is an essential trace element for human health. To date, a hotspot of functional foods is strengthening the content of organic Se in food using biological Se enrichment. Herein, Se-enriched rice pancakes were produced by directly adding different sodium selenite concentrations into the fermentation process.

View Article and Find Full Text PDF

is not necessary for male fertility, but contributes to maintaining sperm morphology.

J Reprod Dev

December 2024

Laboratory of Molecular Biology and Metabolism, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8572, Japan.

Selenoprotein P (SeP) is synthesized in the liver and plays a vital role in maintaining selenium homeostasis via transport throughout the body. Previous studies have shown that SeP-deficient mice have severely reduced expression of selenoproteins essential for testicular function, leading to male infertility. We previously reported that the high expression of Ccdc152 in hepatocytes acts as a lncRNA, suppressing SeP expression in the liver.

View Article and Find Full Text PDF

Sequence analysis of the Zaire ebolavirus (EBOV) polymerase (L gene) mRNA, using online tools, identified a highly ranked -1 programmed ribosomal frameshift (FS) signal including an ideal slippery sequence heptamer (UUUAAAA), with an overlapping coding region featuring two tandem UGA codons, immediately followed by an RNA region that is the inverse complement (antisense) to a region of the mRNA of the selenoprotein iodothyronine deiodinase II (DIO2). This antisense interaction was confirmed in vitro via electrophoretic gel shift assay, using cDNAs at the EBOV and DIO2 segments. The formation of a duplex between the two mRNAs could trigger the ribosomal frameshift, by mimicking the enhancing role of a pseudoknot structure, while providing access to the selenocysteine insertion sequence (SECIS) element contained in the DIO2 mRNA.

View Article and Find Full Text PDF

Seed Priming with Dynamically Transformed Selenium Nanoparticles to Enhance Salt Tolerance in Rice.

Environ Sci Technol

November 2024

Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, P R China.

Seed priming with nanomaterials is an emerging approach for improving plant stress tolerance. Here, we demonstrated a mechanism for enhancing salt tolerance in rice under salt stress via priming with nonstimulatory nanoparticles such as selenium nanoparticles (SeNPs), distinct from stimulatory nanomaterials. Due to the dynamic transformation ability of SeNPs, SeNP priming could enhance rice salt tolerance by mediating the glutathione cycle to eliminate excess reactive oxygen species (ROS).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!