Re-usable DNA template for the polymerase chain reaction.

Nucleic Acids Res

Department of Pathology and Laboratory Medicine, Temple University School of Medicine, 3400 North Broad Street, Philadelphia, PA 19140, USA.

Published: September 1997

DNA covalently bound to an uncharged nylon membrane was used for consecutive amplifications of several different genes by PCR. Successful PCR amplifications were obtained for membrane-bound genomic and plasmid DNA. Membrane-bound genomic DNA templates were re-used at least 15 times for PCR with specific amplification of the desired gene each time. PCR amplifications of specific sequences of p53, p16, CYP1A1, CYP2D6, GSTM1 and GSTM3 were performed independently on the same strips of uncharged nylon membrane containing genomic DNA. PCR products were subjected to restriction fragment length polymorphism analysis, single-strand conformational polymorphism analysis and/or dideoxy sequencing to confirm PCR-amplified gene sequences. We found that PCR fragments obtained by amplification from bound genomic DNA as template were identical in sequence to those of PCR products obtained from free genomic DNA in solution. PCR was performed using as little as 5 ng genomic or 4 fg plasmid DNA bound to membrane. These results suggest that DNA covalently bound to membrane can be re-used for sample-specific PCR amplifications, providing a potentially unlimited source of DNA for PCR.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC146921PMC
http://dx.doi.org/10.1093/nar/25.17.3537DOI Listing

Publication Analysis

Top Keywords

genomic dna
16
pcr amplifications
12
pcr
10
dna
9
dna template
8
dna covalently
8
covalently bound
8
uncharged nylon
8
nylon membrane
8
membrane-bound genomic
8

Similar Publications

Background: The endangered Kashmir musk deer (Moschus cupreus), native to high-altitude Himalayas, is an ecological significant and endangered ungulate, threatened by habitat loss and poaching for musk pod distributed in western Himalayan ranges of India, Nepal and Afghanistan. Despite its critical conservation status and ecological importance in regulating vegetation dynamics, knowledge gaps persist regarding its population structure and genetic diversity, hindering effective management strategies.

Methods And Results: We aimed to understand the population genetics of Kashmir musk deer in north-western Himalayas using two mitochondrial DNA (mtDNA) regions and 11 microsatellite loci.

View Article and Find Full Text PDF

Palmitate potentiates the SMAD3-PAI-1 pathway by reducing nuclear GDF15 levels.

Cell Mol Life Sci

January 2025

Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, Unitat de Farmacologia, Universitat de Barcelona, Av. Joan XXIII 27-31, 08028, Barcelona, Spain.

Nuclear growth differentiation factor 15 (GDF15) reduces the binding of the mothers' against decapentaplegic homolog (SMAD) complex to its DNA-binding elements. However, the stimuli that control this process are unknown. Here, we examined whether saturated fatty acids (FA), particularly palmitate, regulate nuclear GDF15 levels and the activation of the SMAD3 pathway in human skeletal myotubes and mouse skeletal muscle, where most insulin-stimulated glucose use occurs in the whole organism.

View Article and Find Full Text PDF

An aerobic, Gram-stain-positive, motile, coccus-shaped actinomycete, designated strain LSe6-4, was isolated from leaves of sea purslane (Sesuvium portulacastrum L.) in Thailand and subjected to a polyphasic taxonomic studies. Growth of the strain occurred at temperatures between 15 and 38 °C, and with NaCl concentrations 0-13%.

View Article and Find Full Text PDF

Down syndrome (DS) is strongly associated with Alzheimer's disease (AD) due to APP overexpression, exhibiting Amyloid-β (Aβ) and Tau pathology similar to early-onset (EOAD) and late-onset AD (LOAD). We evaluated the Aβ plaque proteome of DS, EOAD, and LOAD using unbiased localized proteomics on post-mortem paraffin-embedded tissues from four cohorts (n = 20/group): DS (59.8 ± 4.

View Article and Find Full Text PDF

Perceived discrimination, recognized as a chronic psychosocial stressor, has adverse consequences on health. DNA methylation (DNAm) may be a potential mechanism by which stressors get embedded into the human body at the molecular level and subsequently affect health outcomes. However, relatively little is known about the effects of perceived discrimination on DNAm.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!