P-glycoprotein, the overexpression of which is a major cause for the failure of cancer chemotherapy in man, recognizes and transports a broad range of structurally unrelated amphiphilic compounds. This study reports on the localization of the binding site of P-glycoprotein for iodomycin, the Bolton-Hunter derivative of the anthracycline daunomycin. Plasma membrane vesicles isolated from multidrug-resistant Chinese hamster ovary B30 cells were photolabeled with [125I]iodomycin. After chemical cleavage behind the tryptophan residues, 125I-labeled peptides were separated by electrophoresis and high performance liquid chromatography. Edman sequencing revealed that [125I]iodomycin had been predominantly incorporated into the fragment 230-312 of isoform I of hamster P-glycoprotein. According to models based on hydropathy plots, the amino acid sequence 230-312 forms the distal part of transmembrane segment 4, the second cytoplasmic loop, and the proximal part of transmembrane segment 5 in the N-terminal half of P-glycoprotein. The binding site for iodomycin is recognized with high affinity by vinblastine and cyclosporin A.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1074/jbc.272.33.20913 | DOI Listing |
Ann Hematol
January 2025
Department of Hematology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, China.
Acute promyelocytic leukemia (APL) is driven by the specific fusion gene PML-RARA produced by chromosomal translocation. Three classic isoforms, L, V, and S, are found in more than 95% of APL patients. However, atypical PML-RARA isoforms are usually associated with uncertain disease progression and treatment prognosis.
View Article and Find Full Text PDFChemMedChem
January 2025
UMR-CNRS 7285, Institut de Chimie des Milieux et des Matériaux de Poitiers, groupe « Systèmes Moléculaires Programmés », Faculté des Sciences Fondamentales et Appliquées, 4 rue Michel Brunet, TSA 51106, 86073, Poitiers, FRANCE.
The development of novel therapeutic strategies enabling the selective destruction of tumors while sparing healthy tissues is of great interest to improve the efficacy of cancer chemotherapy. In this context, we designed a β-glucuronidase-responsive albumin-binding prodrug programmed to release a potent Isocombretastatin A-4 analog within the tumor microenvironment. When injected at a non-toxic dose in mice bearing orthotopic triple-negative mammary tumors, this prodrug produced a significant anticancer activity, therefore offering a valuable alternative to the systemic administration of the parent drug.
View Article and Find Full Text PDFJ Chem Inf Model
January 2025
Molecular Modeling Section (MMS), Department of Pharmaceutical and Pharmacological Sciences, University of Padova, via Marzolo 5, Padova 35131, Italy.
During the last 20 years, the fragment-based drug discovery approach gained popularity in both industrial and academic settings due to its efficient exploration of the chemical space. This bottom-up approach relies on identifying high-efficiency small ligands (fragments) that bind to a target binding site and then rationally evolve them into mature druglike compounds. To achieve such a task, researchers rely on accurate information about the ligand binding mode, usually obtained through experimental techniques, such as X-ray crystallography or computer simulations.
View Article and Find Full Text PDFEnviron Sci Process Impacts
January 2025
School of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China.
Trivalent chromium (Cr) is a heavy metal widely present in tannery wastewater, and organic ligands represented by gallic acid (GA) have significant effects on the environmental behavior of Cr. This study explored the binding process of Cr with GA through the integration of ultraviolet-visible (UV-vis), Fourier transform infrared (FTIR), and fluorescence spectroscopy coupled with two-dimensional correlation analyses (2DCOS). UV-vis results showed that the average molecular weight of the solutions gradually increased with the addition of Cr ions.
View Article and Find Full Text PDFChemMedChem
January 2025
Université Claude Bernard Lyon 1: Universite Claude Bernard Lyon 1, Centre de Recherche en Cancérologie de Lyon, FRANCE.
The serine/threonine protein kinase CK2, a tetramer composed of a regulatory dimer (CK2β2) bound to two catalytic subunits CK2α, is a well-established therapeutic target for various pathologies, including cancer and viral infections. Several types of CK2 inhibitors have been developed, including inhibitors that bind to the catalytic ATP-site, bivalent inhibitors that occupy both the CK2α ATP-site and the αD pocket, and inhibitors that target the CK2α/CK2β interface. Interestingly, the bivalent inhibitor AB668 shares a similar chemical structure with the interface inhibitor CCH507.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!