The present paper reviews work from our laboratories evaluating the importance of adrenal cortical hormones in acidification by proximal and cortical distal tubules. Proximal acidification was determined by stationary microperfusion, and measurement of bicarbonate reabsorption using luminal pH determination was performed with H(+)-ionsensitive microelectrodes. Rats were adrenalectomized (ADX) 48 h before the experiments, and corticosteroids (aldosterone (A), corticosterone (B), and 18-OH corticosterone (18-OH-B)) were injected intramuscularly 100 and 40 min before the experiments. In ADX rats stationary pH increased significantly to 7.03 as compared to sham-operated rats (6.78). Bicarbonate reabsorption decreased from 2.65 +/- 0.18 in sham-operated rats to 0.50 +/- 0.07 nmol cm-2 s-1 after ADX. The administration of the three hormones stimulated proximal tubule acidification, reaching, however, only 47.2% of the sham values in aldosterone-treated rats. Distal nephron acidification was studied by measuring urine minus blood pCO2 differences (U-B pCO2) in bicarbonate-loaded rats treated as above. This pCO2 difference is used as a measure of the distal nephron ability to secrete H+ ions into an alkaline urine. U-B pCO2 decreased significantly from 39.9 +/- 1.26 to 11.9 +/- 1.99 mmHg in ADX rats. When corticosteroids were given to ADX rats before the experiment, U-B pCO2 increased significantly, but reached control levels only when aldosterone (two 3-microgram doses per rat) plus corticosterone (220 micrograms) were given together. In order to control for the effect of aldosterone on distal transepithelial potential difference one group of rats was treated with amiloride, which blocks distal sodium channels. Amiloride-treated rats still showed a significant reduction in U-B pCO2 after ADX. Only corticosterone and 18-OH-B but not aldosterone increased U-B pCO2 back to the levels of sham-operated rats. These results show that corticosteroids stimulate renal tubule acidification both in proximal and distal nephrons and provide some clues about the mechanism of action of these steroids.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1590/s0100-879x1997000400008 | DOI Listing |
J Nephrol
June 2018
Department of Biomedicine, Aarhus University, Aarhus, Denmark.
Can J Physiol Pharmacol
November 2013
a Department of Physiology, The Medical School, Shiraz University of Medical Sciences, Shiraz 71365-1689, Iran.
Acute unilateral ureteral obstruction (UUO) impairs distal nephron acid secretion and stimulates expression of inducible nitric oxide synthase (iNOS) in post-obstructed kidney (POK). This study investigated the influence of pre- or post-treatment with aminoguanidine as a selective iNOS inhibitor on UUO-induced renal functional disturbances. To induce acute UUO, the left ureter in rats was ligated and released after 24 h.
View Article and Find Full Text PDFElectrolyte Blood Press
June 2010
Renal Division, Department of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand.
The molecular approaches to distal renal tubular acidosis (dRTA) associated AE1 mutations lead us to understand the genetic and pathophysiological aspects of the acidification defects. An unanticipated high value of the urine-blood (U-B) PCO(2) after NaHCO(3) loading observed in a case of dRTA and southeast Asian ovalocytosis (SAO) might be from a mistarget of the AE1 to the luminal membrane of type A intercalated cells. The mutations of the AE1 gene resulted in SAO and also affected renal acidification function.
View Article and Find Full Text PDFKidney Int
August 2004
Department of Internal Medicine, Seoul National University, Clinical Research Institute of Seoul National University Hospital, Seoul, Korea.
Background: Urine pH during acidemia and urine PCO2 upon alkalization both may be useful to indicate H+ secretion from collecting ducts. The urine anion gap has been used to detect urinary NH4+ for differential diagnosis of hyperchloremic metabolic acidosis. We have previously demonstrated that the lack of normal H(+)-ATPase may underlie secretory defect distal renal tubular acidosis (dRTA).
View Article and Find Full Text PDFAm J Kidney Dis
June 1999
Renal and Medical Molecular Biology Units, Songklanakarin Hospital, Bangkok, Thailand.
Southeast Asian ovalocytosis (SAO) is the best-documented disease in which mutation in the anion exchanger-1 (AE1) causes decreased anion (chloride [Cl-]/bicarbonate [HCO3-]) transport. Because AE1 is also found in the basolateral membrane of type A intercalated cells of the kidney, distal renal tubular acidosis (dRTA) might develop if the function of AE1 is critical for the net excretion of acid. Studies were performed in a 33-year-old woman with SAO who presented with proximal muscle weakness, hypokalemia (potassium, 2.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!