T-cells and monocytes are the first cells infiltrating the arterial intima during the early stages of atherogenesis. Recently our laboratory has provided evidence that T-cells isolated from atherosclerotic intima reacts against heat shock protein 60 (Hsp60). Transmigration of activated T-cells into the intima is mediated by adhesion molecules (ICAM-1; VCAM-1; ELAM-1) expressed on activated endothelial cells. Here we studied the potential of cytokines (TNF-alpha, IFN-gamma, IL-1). Escherichia coli lipopolysaccharide (LPS), native and oxidized low-density lipoprotein (LDL; oxLDL) and high temperature to induce adhesion molecules as well as Hsp60 and Hsp70 expression in human endothelial cells (EC). On Northern blots, a strong signal for ICAM-1, VCAM-1 and ELAM-1 was detected after 4 h, which thereafter declined, but did not reach the basal level of untreated control cells. Heat shock induced the expression of Hsp60 and Hsp70 but not of adhesion molecules. EC were cultivated in serum-free medium, which led to the expression of adhesion molecule transcripts. Addition of LDL or oxLDL to these ECs did not alter the expression of these transcripts. The production of adhesion molecule proteins was analysed by flow cytometry. In human venous endothelial cells (HVEC) and human arterial endothelial cells (HAEC) ICAM-1 and VCAM-1 production was permanently highly induced, whereas the high level of ELAM-1 production at 4 h disappeared after 24 h. Furthermore, only HAEC, but not HVEC, produced ICAM-1, VCAM-1 and ELAM-1 after stress by moderately and highly oxLDL. LDL and oxLDL did not induce the production of Hsp60 and Hsp70. The present study demonstrates the co-expression of Hsp60 and adhesion molecules in arterial and venous EC in response to cytokine and LPS exposure, and that oxLDL is an efficient inducer of adhesion molecules in arterial EC and not in venous EC. These features provide the prerequisites for a cellular immune reaction against Hsp60 expressed by stressed EC in the initial stages of atherosclerosis.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC312986 | PMC |
http://dx.doi.org/10.1379/1466-1268(1997)002<0094:ceoive>2.3.co;2 | DOI Listing |
Alzheimers Dement
December 2024
UK Dementia Research Institute, University of Edinburgh, Edinburgh, United Kingdom.
Background: Small vessel disease (SVD) is a disorder of the brain's microvessels and a common cause of dementia and stroke. Evidence links normal ageing features to SVD progression, involving endothelial activation, pericyte dysfunction, BBB failure, and microglia response. Here, we aim to examine this relationship through a series of translational investigations.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
University of Southern California, Los Angeles, CA, USA.
Background: APOE4 carriers exhibit cerebrovascular dysfunction which may contribute to the development of cognitive decline and dementia; however, the mechanisms underlying this pathophysiology remain unknown. Impaired cerebrovascular reactivity (CVR) may be associated with vascular injury, inflammation, and endothelial dysfunction. To examine whether these processes may be involved in CVR deficits in APOE4 carriers, we explored whether plasma levels of vascular injury markers indicative of inflammation and endothelial dysfunction are associated with impaired CVR to hypercapnia and hypocapnia in older APOE4 carriers.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Alzheimer's Center at Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA.
Background: Neurofibrillary tangles formed by hyperphosphorylated tau aggregates in the brain are one of the classical hallmarks of Alzheimer's Disease (AD). Tau aggregates have been shown to elicit cytotoxicity, leading to overall neuronal loss and cognitive decline in AD. These aggregates can be transmitted from neurons and glial cells to other brain cells through a process known as tau spreading, and ultimately reach the endothelial cells (ECs) lining the vessel walls, thus, causing dysfunction of the neurovascular unit (NVU), a complex multicellular system surrounding brain vessels.
View Article and Find Full Text PDFFront Mol Biosci
December 2024
Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, GA, United States.
Introduction: Sickle cell disease (SCD) is a genetic blood disorder caused by a mutation in the HBB gene, which encodes the beta-globin subunit of hemoglobin. This mutation leads to the production of abnormal hemoglobin S (HbS), causing red blood cells to deform into a sickle shape. These deformed cells can block blood flow, leading to complications like chronic hemolysis, anemia, severe pain episodes, and organ damage.
View Article and Find Full Text PDFCardiovasc Ther
January 2025
Department of Cardiology The First Hospital of Hebei Medical University, Shijiazhuang, Hebei, China.
This study is aimed at investigating the effects of atorvastatin (ATV) on endothelial cell injury in atherosclerosis (AS) through inhibiting acyl-CoA synthetase long-chain family member 4 (ACSL4)-mediated ferroptosis. Human umbilical vein endothelial cells (HUVECs) were treated with oxidized low-density lipoprotein (ox-LDL) to establish an in vitro model of AS. The cell viability, lactate dehydrogenase (LDH) release, apoptosis, and expression levels of apoptotic proteins were assessed.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!