Extracellular cations such as Ca2+ stimulate a G protein-coupled, cation-sensing receptor (CaR). We used microphysiometry to determine whether an extracellular cation-sensing mechanism exists in Madin-Darby canine kidney (MDCK) cells. The CaR agonists Ca2+ and Gd3+ caused cellular activation in a concentration-dependent manner. mRNA for the CaR was identified by reverse transcription and polymerase chain reaction (PCR) using nested CaR-specific primers, identification of an appropriately located restriction site, and sequencing of the subcloned fragment obtained by PCR. G protein activation was evaluated using the GTP photoaffinity label [alpha-32P]GTP azidoanalide (AA-GTP). After stimulation with Gd3+ and cross-linking, plasma membranes were solubilized and immunoprecipitated with antisera specific for Gq/11 alpha and Gi alpha family members. Gd3+ increased incorporation of AA-GTP into Gq/11 alpha precipitates by 146 +/- 48% and into G alpha i-2 and G alpha i-3 to a lesser extent but not into G alpha i-1. Direct effects of Gd3+ on the G proteins were ruled out using partially purified mammalian G proteins expressed in Escherichia coli or Sf9 cells. We conclude that MDCK cells possess a cell-surface CaR that activates Gq/11 alpha, G alpha i-2, and G alpha i-3 but not G alpha i-1.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1152/ajprenal.1997.273.1.F129 | DOI Listing |
Eur J Pharm Sci
January 2025
Centre for Applied Pharmacokinetic Research, University of Manchester, UK.
Access of drugs to the central nervous system is limited by the blood-brain barrier, and this in turn affects drug efficacy/toxicity. To date, most drug discovery optimization paradigms have relied heavily on in vitro transporter assays and preclinical species pharmacokinetic evaluation to provide a qualitative assessment of human brain penetration. Because of the lack of human brain pharmacokinetic data, mechanistic models for preclinical species, combined with in vitro and in silico data, are useful for translation to human.
View Article and Find Full Text PDFActa Physiol (Oxf)
February 2025
Clinical Physiology/Nutritional Medicine, Medical Department, Division of Gastroenterology, Infectiology, Rheumatology, Charité-Universitätsmedizin Berlin, Berlin, Germany.
Aim: Members of the claudin protein family are the major constituents of tight junction strands and determine the permeability properties of the paracellular pathway. In the kidney, each nephron segment expresses a distinct subset of claudins that form either barriers against paracellular solute transport or charge- and size-selective paracellular channels. It was the aim of the present study to determine and compare the permeation properties of these renal paracellular ion channel-forming claudins.
View Article and Find Full Text PDFNat Commun
January 2025
National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, People's Republic of China.
The Eurasian avian-like (EA) H1N1 swine influenza virus (SIV) possesses the capacity to instigate the next influenza pandemic, owing to its heightened affinity for the human-type α-2,6 sialic acid (SA) receptor. Nevertheless, the molecular mechanisms underlying the switch in receptor binding preferences of EA H1N1 SIV remain elusive. In this study, we conduct a comprehensive genome-wide CRISPR/Cas9 knockout screen utilizing EA H1N1 SIV in porcine kidney cells.
View Article and Find Full Text PDFJ Biol Chem
January 2025
Department of Biological Sciences, Moravian University, 1200 Main Street, Bethlehem, PA 18018, USA. Electronic address:
Phosphorylation of connexin 43 (Cx43) is an important regulatory mechanism of gap junction (GJ) function. Cx43 is modified by several kinases on over 15 sites within its ∼140 amino acid-long C-terminus (CT). Phosphorylation of Cx43CT on S255, S262, S279, and S282 by ERK has been widely documented in several cell lines, by many investigators.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Engineering Research Center of Key Technology and Industrialization of Cell-Based Vaccine, Ministry of Education, Lanzhou 730030, China.
Madin-Darby Canine Kidney (MDCK) cells are a key cell line for influenza vaccine production, due to their high viral yield and low mutation resistance. In our laboratory, we established a tertiary cell bank (called M60) using a standard MDCK cell line imported from American Type Culture Collection (ATCC) in the USA. Due to their controversial tumourigenicity, we domesticated non-tumourigenic MDCK cells (named CL23) for influenza vaccine production via monoclonal screening in the early stage of this study, and the screened CL23 cells were characterised based on their low proliferative capacity, which had certain limitations in terms of expanding their production during cell resuscitation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!