Insulin has traditionally been considered as a hormone essential for metabolic regulation, while the insulin-like growth factors (IGF-I and IGF-II) are postulated to be more specifically involved in growth regulation. The conventional wisdom is that they share each other's effects only at high concentrations, due to their weak affinity for the heterologous receptor. We discuss here the evidence that in the proper cellular context, insulin can be mitogenic at physiologic concentrations through its own receptor. We studied the insulin and IGF-I binding characteristics of a new model suitable for analysing insulin receptor mediated mitogenesis; that is, a T-cell lymphoma line that depends on insulin for growth, but is unresponsive to IGFs. The cells showed no specific binding of 125I-IGF-I and furthermore, no IGF-I receptor mRNA was detected by RNAse protection assay in the LB cells, in contrast with mouse brain and thymus. The cells bound at saturation about 3000 insulin molecules to receptors that had normal characteristics in terms of affinity, kinetics, pH dependence and negative co-operativity. A series of insulin analogues competed for 125I-insulin binding with relative potencies comparable to those observed in other insulin target cells. The full sequence of the insulin receptor cDNA was determined and found to be identical to the published sequence of the murine insulin receptor cDNA. The LB cell line is therefore an ideal model with which to investigate insulin mitogenic signalling without interference from the IGF-I receptor. Using this model, we have started approaching the molecular basis of insulin-induced mitogenesis, in particular the role of signalling kinetics in choosing between mitogenic and metabolic pathways.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s001250051393 | DOI Listing |
Lipids Health Dis
January 2025
Department of Cardiology, West China Hospital, Sichuan University West China School of Medicine, 37 Guoxue Road, Chengdu, Sichuan, 610041, China.
Background: Atrial fibrillation (AF) is the most prevalent arrhythmia encountered in clinical practice. Triglyceride glucose index (Tyg), a convenient evaluation variable for insulin resistance, has shown associations with adverse cardiovascular outcomes. However, studies on the Tyg index's predictive value for adverse prognosis in patients with AF without diabetes are lacking.
View Article and Find Full Text PDFJ Am Acad Dermatol
January 2025
Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, 33133, USA.
Purpose: Glucagon-like peptide-1 receptor agonists (GLP-1RAs) have risen exponentially in usage and have been shown to exert neuroprotective and anti-inflammatory effects across multiple organ systems. This study investigates whether GLP-1RAs influence the risk for age-related ocular diseases.
Design: Retrospective cohort study.
Front Biosci (Landmark Ed)
January 2025
Division of Molecular Psychiatry, Center of Mental Health, University of Hospital Würzburg, 97080 Würzburg, Germany.
Background: The inheritance of the short allele, encoding the serotonin transporter (SERT) in humans, increases susceptibility to neuropsychiatric and metabolic disorders, with aging and female sex further exacerbating these conditions. Both central and peripheral mechanisms of the compromised serotonin (5-HT) system play crucial roles in this context. Previous studies on SERT-deficient (Sert) mice, which model human SERT deficiency, have demonstrated emotional and metabolic disturbances, exacerbated by exposure to a high-fat Western diet (WD).
View Article and Find Full Text PDFNutrients
January 2025
Instituto de Bioeletricidade Celular (IBIOCEL): Ciência & Saúde, Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Rua João Pio Duarte Silva, 241, Sala G 301, Florianópolis 88038-000, SC, Brazil.
Diabetes mellitus is a metabolic syndrome that has grown globally to become a significant public health challenge. Hypothesizing that the plasma membrane protein, transient receptor potential ankyrin-1, is a pivotal target in insulin resistance, we investigated the mechanism of action of cinnamaldehyde (CIN), an electrophilic TRPA1 agonist, in skeletal muscle, a primary insulin target. Specifically, we evaluated the effect of CIN on insulin resistance, hepatic glycogen accumulation and muscle and adipose tissue glucose uptake.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!