Cell-specific protein and gene expression in the juxtaglomerular apparatus.

Clin Exp Pharmacol Physiol

Department of Pathology, Harbor-UCLA Medical Center, Torrance 90509, USA.

Published: July 1997

1. The juxtaglomerular apparatus (JGA) consists of a tubular component, the macula densa (MD), attached to a vascular component consisting of the afferent and efferent arterioles and the extraglomerular mesangium. The JGA is richly innervated by sympathetic fibres. 2. The MD is morphologically, histochemically and functionally different from the ascending thick portion of the loop of Henle where it is located. 3. The vascular component includes the vascular smooth muscle cells of the arteriole, the renin-producing cells or juxtaglomerular cells, extraglomerular mesangial cells (Goormaghtigh cells) and endothelial cells. They are coupled by gap junctions. 4. Physiological evidence indicates that the composition of tubular fluid at the MD regulates renin secretion and glomerular haemodynamics and that the JGA is important in the maintenance of body salt-water homeostasis. Evidence suggests that the MD exerts its action on the vascular component through a paracrine mechanism.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1440-1681.1997.tb01239.xDOI Listing

Publication Analysis

Top Keywords

vascular component
12
juxtaglomerular apparatus
8
cells
6
cell-specific protein
4
protein gene
4
gene expression
4
expression juxtaglomerular
4
apparatus juxtaglomerular
4
apparatus jga
4
jga consists
4

Similar Publications

The variability in translational models profoundly impacts the outcomes and predictive value of preclinical studies for gastrointestinal (GI) cancer treatments. Preclinical models, including 2D cell cultures, 3D organoids, patient-derived xenografts (PDXs), and animal models, provide distinct advantages and limitations in replicating the complex tumor microenvironment (TME) of human cancers. Each model's unique biological and structural differences contribute to discrepancies in treatment responses, challenging the direct translation of experimental results to clinical settings.

View Article and Find Full Text PDF

Unveiling the therapeutic journey of snail mucus in diabetic wound care.

Naunyn Schmiedebergs Arch Pharmacol

January 2025

Chitkara College of Pharmacy, Chitkara University, Rajpura, 140401, Punjab, India.

A diabetic wound (DW) is an alteration in the highly orchestrated physiological sequence of wound healing especially, the inflammatory phase. These alterations result in the generation of oxidative stress and inflammation at the injury site. This further leads to the impairment in the angiogenesis, extracellular matrix, collagen deposition, and re-epithelialization.

View Article and Find Full Text PDF

In modern war theaters, exposures to blast overpressures are one of the most common causes of brain injury. These pervasive events result in acute and chronic cerebrovascular degenerative processes. Using a rat model of blast-induced mild traumatic brain injury, we identified intramural periarterial hematomas as early primary acute lesions induced by blast exposures.

View Article and Find Full Text PDF

Pulmonary sarcomatoid carcinoma (PSC) is a rare non-small-cell lung cancer with sarcomatous components or sarcomatoid differentiation, high degree of malignancy, and insensitivity to chemotherapy or radiotherapy. The management of PSC coexisting with tuberculosis (TB) poses a greater challenge, as it necessitates concurrent administration of both anti-TB and anti-neoplastic therapies. The efficacy of anti-PD-1 immunotherapy in non-small-cell lung cancer is promising, but its safety in patients with co-existent TB remains uncertain.

View Article and Find Full Text PDF

Cerebrovascular endothelial cell (EC) subtypes characterized by blood-brain barrier (BBB) properties or fenestrated pores are essential components of brain-blood interfaces, supporting brain function and homeostasis. To date, the origins and developmental mechanisms underlying this heterogeneous EC network remain largely unclear. Using single-cell-resolution lineage tracing in zebrafish, we discover a multipotent vascular niche at embryonic capillary borders that generates ECs with BBB or fenestrated molecular identity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!