C3 was isolated in purified form from fresh murine serum and plasma by precipitation as euglobulin followed by removal of other proteins on immunoadsorbent columns bearing antibodies raised against specifically C3 depleted serum. Recovery was 30--55% and the C3 was all in its native form. Functional activity was demonstrated by fixation of the C3 on EAC142gp cells and by interaction with lymphocyte C3 receptors. Mouse C3 in plasma and after isolation had a molecular weight of 240,000. Its cleavage by classical pathway and cobra factor induced C3 convertases and by trypsin yielded a major conversion product with molecular weight not less than 210,000, the electrophoretic mobility of which differed when it was generated from isolated C3 rather than in plasma.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1445393PMC

Publication Analysis

Top Keywords

molecular weight
8
isolation study
4
study murine
4
murine isolated
4
isolated purified
4
purified form
4
form fresh
4
fresh murine
4
murine serum
4
serum plasma
4

Similar Publications

The need for stringent phosphorus removal from domestic wastewater is increasing to mitigate eutrophication, while efficient phosphate reuse is critical due to the global phosphate crisis. Combining aluminum sulfate (ALS) with high molecular weight organic polymers achieved 95-99% removal of particles, turbidity, and phosphates, reducing ALS usage by 40%. We propose mechanisms to explain the enhanced treatment efficiency.

View Article and Find Full Text PDF

Coronaviruses (CoV) emerge suddenly from animal reservoirs to cause novel diseases in new hosts. Discovered in 2012, the Middle East respiratory syndrome coronavirus (MERS-CoV) is endemic in camels in the Middle East and is continually causing local outbreaks and epidemics. While all three newly emerging human CoVs from the past 20 years (SARS-CoV, SARS-CoV-2, and MERS-CoV) cause respiratory disease, each CoV has unique host interactions that drive differential pathogeneses.

View Article and Find Full Text PDF

Iron(II/III) Alters the Relative Roles of the Microbial Byproduct and Humic Acid during Chromium(VI) Reduction and Fixation by Soil-Dissolved Organic Matter.

Environ Sci Technol

January 2025

Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China.

Though reduction of hexavalent chromium (Cr(VI)) to Cr(III) by dissolved organic matter (DOM) is critical for the remediation of polluted soils, the effects of DOM chemodiversity and underlying mechanisms are not fully elucidated yet. Here, Cr(VI) reduction and immobilization mediated by microbial byproduct (MBP)- and humic acid (HA)-like components in (hot) water-soluble organic matter (WSOM), (H)WSOM, from four soil samples in tropical and subtropical regions of China were investigated. It demonstrates that Cr(VI) reduction capacity decreases in the order WSOM > HWSOM and MBP-enriched DOM > HA-enriched DOM due to the higher contents of low molecular weight saturated compounds and CHO molecules in the former.

View Article and Find Full Text PDF

Low temperature thermal RAFT depolymerization: the effect of Z-group substituents on molecular weight control and yield.

Chem Sci

January 2025

Laboratory of Polymeric Materials, Department of Materials, ETH Zurich Vladimir Prelog Weg 5 8093 Zurich Switzerland

The labile end-groups inherent to many controlled radical polymerization methodologies, including atom transfer radical polymerization (ATRP) and reversible addition-fragmentation chain-transfer (RAFT) polymerization, can trigger the efficient chemical recycling of polymethacrylates yielding high percentages of pristine monomer. Yet, current thermal solution ATRP and RAFT depolymerization strategies require relatively high temperatures ( 120-170 °C) to proceed, with slower depolymerization rates, and moderate yields often reported under milder reaction conditions ( lower temperatures). In this work, we seek to promote the low temperature RAFT depolymerization of polymethacrylates regulating the Z-group substitution of dithiobenzoate.

View Article and Find Full Text PDF

Currently, the trials found that the clinical efficacy of molnupiravir is lower than ritonavir-boosted nirmatrelvir. An explanation for these different efficacies in clinical treatments is still limited. The analysis method was developed and validated to simultaneously quantify nirmatrelvir, ritonavir, and beta-D-N4-hydroxycytidine (NHC) in human plasma and bronchoalveolar lavage fluid (BALF) by electrospray ionization mass spectrometry.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!