Studies were undertaken to analyze the ability of entomopathogenous fungi to degrade insect hydrocarbons. Strains of Beauveria bassiana and Metarhizium anisopliae pathogenic to the blood-sucking bug Triatoma infestans were grown on hydrocarbon and non-hydrocarbon insect lipid extracts and on synthetic hydrocarbon-enriched media as the sole carbon source. Entomopathogenous fungi were shown to utilize hydrocarbons as the only carbon source for their growth. Insect-derived hydrocarbons served more efficiently as metabolic fuel rather than synthetic compounds of similar structure. [3H]n-Pentacosane, [11,12-3H]3,11-dimethylnonacosane, and [14C]n-hexadecane were catabolized into different amounts of polar lipids, free fatty acids, and acylglycerols. In experiments using the branched alkane, labeled hydrocarbons of different chain length than the precursor were also synthesized. Evidence of complete catabolism was obtained by a significant release of 14CO2 from [1-14C]n-hexadecane. 14CO2 production might be used as a simple method to compare hydrocarbon utilization by fungal strains. These data demonstrate that entomopathogenous fungi are able to transform a variety of hydrocarbon structures into different lipid products, part of which may be subsequently utilized for energy production and for the biosynthesis of cellular components. These data are the first evidence of hydrocarbon catabolism and synthesis in entomopathogenous fungi.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1006/abbi.1997.0163 | DOI Listing |
PLoS One
January 2025
Department of Entomology, The Pennsylvania State University, University Park, PA, United States of America.
Because the use of synthetic agrochemicals is generally not allowed in organic crop production systems, growers rely on natural substances and processes, such as microbial control, to suppress insect pests. Reduced tillage practices are associated with beneficial soil organisms, such as entomopathogenic fungi, that can contribute to the natural control of insect pests. The impacts of management, such as tillage, in a cropping system can affect soil biota in the current season and can also persist over time as legacy effects.
View Article and Find Full Text PDFThe entomopathogenic fungus isolate ICIPE 7 is being developed as an eco-friendly alternative to chemical acaricides in managing natural tick infestation on livestock. Its impact on tick infestation and tick-borne infections in cattle under natural conditions are yet unclear. We conducted a randomized controlled field trial to assess the safety and effects of Tickoff® (a formulation of isolate ICIPE 7) and the chemical acaricide Triatix® on tick infestation and incidence of and in extensively grazed zebu cattle in coastal Kenya.
View Article and Find Full Text PDFJ Invertebr Pathol
January 2025
Department of Biosciences, Faculty of Science and Engineering, Swansea University, Swansea, UK. Electronic address:
Plants employ various defense mechanisms to protect themselves from invaders such as microorganisms and herbivores. By recognizing these threats, plants can trigger a cascade of responses throughout their tissues, effectively priming their defenses and enhancing their resistance to future attacks. In this study, we examined the indirect effects of the entomopathogenic fungi Beauveria bassiana strain GHA and Metarhizium anisopliae strain F01 on tomato growth, expression of selected plant genes, production of secondary metabolites, and preference and performance of the tomato leafminer (Tuta absoluta).
View Article and Find Full Text PDFPest Manag Sci
January 2025
Laboratorio de Bioproducción, Bioinsumos, INIA Las Brujas, Canelones, Uruguay.
Background: Biological control methods involving entomopathogenic fungi like Beauveria bassiana have been shown to be a valuable approach in integrated pest management as an environmentally friendly alternative to control pests and pathogens. Identifying genetic determinants of pathogenicity in B. bassiana is instrumental for enhancing its virulence against insects like the resistant soybean pest Piezodorus guildinii.
View Article and Find Full Text PDFMicroorganisms
November 2024
Department of Entomology, College of Agriculture, Life and Environmental Sciences, University of Arizona, Tucson, AZ 85719, USA.
Hard ticks (family Ixodidae) are one of the most predominant arthropod disease vectors worldwide, second only to mosquitoes. In addition to harboring animal and human pathogens, ticks are known to carry a microbial community constituted of non-pathogenic organisms, which includes maternally inherited intracellular endosymbionts and other environmentally acquired extracellular microorganisms. These microbial communities, which include bacteria, viruses, protozoans, and fungi-with often commensal, mutualistic, or parasitic associations with the tick-comprise the tick microbiome, bacteria being the most studied community.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!