A series of imidazo[1,2-b]pyridazine-2-carboxylic acids, esters and amides was synthesized and tested for antiinflammatory, analgesic and ulcerogenic activities. The ethyl esters were prepared by cyclocondensation of some 3-aminopyridazines with ethyl bromopyruvate, followed by hydrolysis or ammonolysis in order to obtain the corresponding acids and amides. The inhibitory activity on the carrageenan-induced edema in the rat paw and on writhes induced by acetic acid in mice was evaluated, as well as the ulcerogenic action on the rat gastric mucosa. The pharmacological activity was discussed in terms of structure-activity relationships. In particular, the analgestic activity shown by these carboxylic derivatives was compared with that found in other series of imidazo[1,2-b]pyridazine analogues previously examined.

Download full-text PDF

Source

Publication Analysis

Top Keywords

pharmacological activity
8
heterocyclic compounds
4
compounds xxxviii
4
xxxviii synthesis
4
synthesis pharmacological
4
activity
4
activity imidazo[12-b]pyridazine-2-carboxylic
4
imidazo[12-b]pyridazine-2-carboxylic derivatives
4
derivatives series
4
series imidazo[12-b]pyridazine-2-carboxylic
4

Similar Publications

Chemotherapy-induced peripheral neuropathy (CIPN) is a serious side effect of anticancer agents with limited effective preventive or therapeutic interventions. Although fenofibrate, a peroxisome proliferator-activated receptor-alpha (PPARα) agonist, has demonstrated neuroprotective and analgesic properties, its clinical utility is hindered by low receptor affinity, poor subtype selectivity, and suboptimal bioavailability. A190, a highly selective and potent nonfibrate PPARα agonist, offers a promising alternative but is limited by poor aqueous solubility, resulting in reduced oral bioavailability and therapeutic efficacy.

View Article and Find Full Text PDF

Inosine 5'-monophosphate dehydrogenase (IMPDH) is a promising antibiotic target. This enzyme catalyzes the NAD-dependent oxidation of inosine 5'-monophosphate (IMP) to xanthosine 5'-monophosphate (XMP), which is the rate-limiting step in guanine nucleotide biosynthesis. Bacterial IMPDH-specific inhibitors have been developed that bind to the NAD site.

View Article and Find Full Text PDF

Cancer immunotherapies rely on CD8 cytolytic T lymphocytes (CTLs) in recognition and eradication of tumor cells via antigens presented on major histocompatibility complex class I (MHC-I) molecules. However, we observe MHC-I deficiency in human and murine urologic tumors, posing daunting challenges for successful immunotherapy. We herein report an unprecedented nanosonosensitizer of one-dimensional bamboo-like multisegmented manganese dioxide@manganese-bismuth vanadate (BMMBV) to boost multiple branches of immune responses targeting MHC-I-deficient tumors.

View Article and Find Full Text PDF

ClpXP is a two-component mitochondrial matrix protease. The caseinolytic mitochondrial matrix peptidase chaperone subunit X (ClpX) recognizes and translocates protein substrates into the degradation chamber of the caseinolytic protease P (ClpP) for proteolysis. ClpXP degrades damaged respiratory chain proteins and is necessary for cancer cell survival.

View Article and Find Full Text PDF

Hepatocellular carcinoma(HCC) has a high mortality and morbidity rate and seriously jeopardizes human life. Chemicals and chemotherapeutic agents have been experiencing problems such as side effects and drug resistance in the treatment of HCC, which cannot meet the needs of clinical treatment. Therefore, finding novel low-toxicity and high-efficiency anti-hepatocellular carcinoma drugs and exploring their mechanisms of action have become the current problems to be solved in the treatment of HCC.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!