Valproic acid (VPA) is a commonly used antiepileptic agent that recently has been found useful in the treatment of affective disorders and prophylaxis of migraine. VPA induces congenital malformations, especially spina bifida, in the offspring of women treated with this agent during early pregnancy. The mechanism by which VPA induces abnormal development remains unknown despite many studies in experimental animals in which VPA causes malformations similar to those seen in human infants. Because of its chemical structure as a weak organic acid and its capability to induce postaxial forelimb ectrodactyly in C57BL/6 mice, we postulated that VPA acts to perturb limb morphogenesis by reducing embryonic intracellular pH (pHi). We administered VPA, 200 to 400 mg/kg, to C57BL/6 mice on day 9 of gestation. A dose-dependent incidence of postaxial forelimb ectrodactyly was observed. Forelimb bud pHi was estimated by computer-assisted image analysis from the transplacental distribution of 14C-DMO. At the highest doses, 300 and 400 mg/kg, a decrease of pHi of 0.2 to 0.3 pH units was observed uniformly throughout the limb bud 1 h after VPA treatment. None of these changes were seen after treatment with 2-en VPA, a nonteratogenic analog of VPA. Furthermore, the capability of VPA to induce postaxial forelimb ectrodactyly was greatly enhanced by coadministration of agents that inhibit pHi regulatory processes. These data support the hypothesis that VPA-induced postaxial ectrodactyly in murine fetuses can be attributed to reduction in limb bud pHi.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s0890-6238(97)00015-4 | DOI Listing |
Animals (Basel)
March 2021
Department of Veterinary Sciences, University of Messina, Viale Palatucci, 98168 Messina, Italy.
Four dogs were presented with thoracic limb deformity. After clinical and radiographic examinations, a diagnosis of congenital malformations was performed for each of them. In one case, a deformity involving both the radial and ulnar side of the distal limb was observed.
View Article and Find Full Text PDFJ Anat
March 2020
UMR 7179 MECADEV, MNHN - CNRS, Département Adaptations du Vivant, Muséum National d'Histoire Naturelle, Paris, France.
The monobasal pectoral fins of living coelacanths and lungfishes are homologous to the forelimbs of tetrapods and are thus critical to investigate the origin thereof. However, it remains unclear whether the similarity in the asymmetrical endoskeletal arrangement of the pectoral fins of coelacanths reflects the evolution of the pectoral appendages in sarcopterygians. Here, we describe for the first time the development of the pectoral fin and shoulder girdle in the extant coelacanth Latimeria chalumnae, based on the tomographic acquisition of a growth series.
View Article and Find Full Text PDFCurr Zool
October 2019
Instituto de Biodiversidad Neotropical (UNT-CONICET) Horco Molle s/n Yerba Buena, Tucumán. Cátedra de Biología General, Facultad de Ciencias Naturales, UNT, Tucumán, Argentina.
The interaction between organisms and their environment is central in functional morphology. Differences in habitat usage may imply divergent morphology of locomotor systems; thus, detecting which morphological traits are conservative across lineages and which ones vary under environmental pressure is important in evolutionary studies. We studied internal and external morphology in 28 species of Neotropical anurans.
View Article and Find Full Text PDFAm J Phys Anthropol
January 2018
Primatology Station of the CNRS, UPS 846, RD 56, Rousset-sur-Arc, 13790, France.
Objectives: Relatively long digits are considered to enhance grasping performance in primates. We tested whether growth-related changes in intrinsic hand and foot proportions may have behavioral implications for growing animals, by examining whether ontogenetic changes in digital proportions are related to variation in voluntary grasping behaviors in baboons.
Materials And Methods: Longitudinal morphological and behavioral data were collected on 6 captive olive baboons (Papio anubis) as they aged from 5 to 22 months.
Evol Dev
January 2017
Paläontologisches Institut und Museum, University of Zurich, Karl-Schmid-Strasse 4, 8006 , Zurich, Switzerland.
Fossorial talpid moles use their limbs predominantly for digging, which explains their highly specialized anatomy. The humerus is particularly short and dorsoventrally rotated, with broadened distal and proximal parts where muscles attach and which facilitate powerful abductive movements. The radius and ulna are exceptionally robust and short.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!