Dynamic interfacial tension values obtained by drop volume tensiometry will be affected under certain experimental conditions by the formation of a neck between the drop and the capillary tip. This phenomenon must be accounted for to obtain accurate values of interfacial tension. In this work, neck formation for a water-mineral oil system is studied under conditions where hydrodynamic effects can be neglected. A model originally developed for the determination of the surface tension of a suspended drop is modified for application to dynamic interfacial tensions of surfactant-containing liquids. The model relates apparent values of interfacial tension calculated from drops possessing necks to actual values. Experiments with Span 80 (sorbitan monooleate) and sodium dodecyl sulfate (SDS) surfactants in a mineral oil-water system are used to test the validity of the developed model. For the small tip diameter used, good agreement is obtained for Span 80 up to the critical micelle concentration, and for low concentrations of SDS, when the surfactant adsorption is diffusion-limited. In both cases, the neck diameter of the growing drop can be considered constant over the range of dynamic interfacial tensions tested.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1006/jcis.1997.4891 | DOI Listing |
Sci Rep
January 2025
LCEA Laboratory, Faculty of Sciences, Mohammed Premier University, Oujda, Morocco.
In the current investigation, the efficiency inhibition of two newly synthesized bi-pyrazole derivatives, namely 2,3-bis[(bis((1 H-pyrazol-1-yl) methyl) amino)] pyridine (Tetra-Pz-Ortho) and 1,4-bis[(bis((1 H-pyrazol-1-yl) methyl) amino)] benzene (Tetra-Pz-Para) for corrosion of carbon steel (C&S) in 1 M HCl medium was evaluated. A Comparative study of inhibitor effect of Tetra-Pz-Ortho and Tetra-Pz-Para was conducted first using weight loss method and EIS (Electrochemical Impedance Spectroscopy) and PDP (Potentiodynamic Polarisation) techniques. Tetra-Pz-Ortho and Tetra-Pz-Para had a maximum inhibition efficacy of 97.
View Article and Find Full Text PDFJ Colloid Interface Sci
January 2025
National Key Laboratory of Science and Technology on Aero-Engine Aero-Thermodynamics, Research Institute of Aero-Engine, Beihang University, Beijing 100191, China. Electronic address:
Hypothesis: Complex emulsions usually consist of aqueous phases, like oil-in-water-in-oil (o/w/o) and water-in-oil-in-water (w/o/w), serving foundational roles in colloid science. Oil-in-oil-oil (o/o/o) emulsions offer new avenues for non-aqueous reagents but face challenges in balancing the forces between multiple organic phases.
Experiments: In this work, we generate o/o/o emulsions by integrating an AC electric field with a double cross-junction microchannel.
J Phys Chem B
January 2025
Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States.
Direct air capture of CO using amino acid absorbents, such as glycine or sarcosine, is constrained by the relatively slow mass transfer of CO through the air-aqueous interface. Our recent study showed a marked improvement in CO capture by introducing CO-permeable oligo-dimethylsiloxane (ODMS-MIM) oligomers with cationic (imidazolium, MIM) headgroups. In this work, we have employed all-atom molecular dynamics simulations in combination with subensemble analysis using network theory to provide a detailed molecular picture of the behavior of CO and the glycinate anions (Gly) at the ODMS-MIM decorated air-aqueous interfaces.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Central South University, material science and engineering, 932 Lushan Road, 410083, Changsha, CHINA.
Hydrogen bond (HB) chemistry, a pivotal feature of aqueous zinc-ion batteries, modulates electrochemical processes through weak electrostatic interactions among water molecules. However, significant challenges persist, including sluggish desolvation kinetics and inescapable parasitic reactions at the electrolyte-electrode interface, associated with high water activity and strong Zn2+-solvent coordination. Herein, a targeted localized HB docking mechanism is activated by the polyhydroxy hexitol-based electrolyte, optimizing Zn2+ solvation structures via dipole interaction and reconstructing interfacial HB networks through preferential parallel adsorption.
View Article and Find Full Text PDFACS Nano
January 2025
School of Mechanical Engineering, Sichuan University, Chengdu 610065, China.
Natural skin receptors use ions as signal carriers, while most of the developed artificial tactile sensors utilize electrons as information carriers. To imitate the biological ionic sensing behavior, here, we present a kind of biomimetic, ionic, and fully passive mechanotransduction mechanism leveraging mechanical modulation of interfacial ionic p-n junction (IPNJ) through microchannels. Sensors based on this mechanism do not rely on an external power supply and can encode external tactile stimuli into highly analogous signal outputs to those of natural skin receptors, in terms of both signal type (i.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!