Objective: To determine whether interstitial collagenase (matrix metalloproteinase-1), known to play a pivotal role in the initiation of menstruation, contributes to the pathogenesis of endometriosis.
Design: Serial sections of peritoneal red and black endometriotic lesions, ovarian endometriotic cysts, and rectovaginal adenomyotic nodules were analyzed by in situ hybridization for the expression of matrix metalloproteinase-1 by silver staining for the integrity of the fibrillar extracellular matrix and by immunolabeling for the abundance of sex steroid receptors.
Setting: Academic hospital and research laboratory.
Patient(s): Premenopausal women undergoing laparoscopy for endometriosis.
Intervention(s): Biopsy of endometriotic lesions, combined with endometrium whenever possible.
Main Outcome Measure(s): Expression of matrix metalloproteinase-1 messenger RNA (mRNA).
Result(s): Matrix metalloproteinase-1 mRNA was expressed focally in red peritoneal and ovarian endometriosis irrespective of the phase of the menstrual cycle but was not detectable in black peritoneal and rectovaginal lesions. Foci of matrix metalloproteinase-1 expression closely correlated with matrix breakdown and with the absence of P receptors in adjacent epithelial cells.
Conclusion(s): Correlation of matrix metalloproteinase-1 expression with activity of endometriotic tissue suggests its involvement in tissue remodeling and bleeding, and possibly in the secondary shedding and reimplantation of endometriotic lesions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s0015-0282(97)81510-5 | DOI Listing |
Chin Med
January 2025
Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, 710069, China.
Background: Cutaneous hypertrophic scar is a fibro-proliferative hard-curing disease. Recent studies have proved that antagonists of angiotensin II type 1 receptor (ATR) and agonists of type 2 receptor (ATR) were able to relieve hypertrophic scar. Therefore, establishing new methods to pursue dual-target lead compounds from Chinese herbs is in much demand for treating scar.
View Article and Find Full Text PDFGenes Environ
January 2025
Graduate Division of Nutritional and Environmental Sciences, University of Shizuoka, Yada 52- 1, Suruga-ku, Shizuoka, 422-8526, Japan.
Background: Skin is exposed to various environmental factors throughout life, and some of these factors are known to contribute to skin aging. Long-term solar UV exposure is a well-known cause of skin aging, as is cigarette smoke, which contains a number of chemicals. In this study, combined effect of UVA and cigarette sidestream smoke (CSS) on matrix metalloproteinase-1 (MMP-1) induction was investigated.
View Article and Find Full Text PDFMolecules
January 2025
Anhui Province Key Laboratory of Bioactive Natural Products, School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China.
Natural products and botanicals continue to play a very important role in the development of cosmetics worldwide. The chemical constituents of a fine active fraction of the whole plant extract of Walp., and the tyrosinase and matrix metalloproteinase-1 (MMP-1) inhibitory and antioxidant activities of this fraction were investigated.
View Article and Find Full Text PDFThe development of an effective and rapid method for healing the skin is of crucial importance. In this study, we prepared a porous scaffold made of polycaprolactone (PCL) and carbon quantum dots (CQDs), Fe, and Chitosan (Cs) as the scaffold core to cover the skin. Then evaluated antibacterial, biocompatibility, and wound healing properties as well as the expression of genes effective in wound healing.
View Article and Find Full Text PDFJ Orthop Surg Res
January 2025
Department of Orthopedic Surgery, Beijing Chaoyang Hospital, Capital Medical University of China, Gongti South Rd, No. 8, Beijing, 100020, China.
Objective: This study aims to investigate changes in matrix metalloproteinase (MMP) and tissue inhibitor of metalloproteinase (TIMP) levels in the intervertebral discs of New Zealand white rabbits under simulated overload and microgravity conditions, focusing on the expression of MMP1, MMP3, and TIMP1. The findings aim to provide a theoretical foundation for preventing and delaying lumbar disc degeneration in these environments.
Methods: Overload was simulated using an animal centrifuge, and microgravity was mimicked through tail suspension.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!