Characterization of polyethyleneglycol-stabilized, manganese-substituted hydroxylapatite (MnHA-PEG). A potential MR blood pool agent.

Acta Radiol Suppl

Medical Imaging Division, Mallinckrodt, Inc., St. Louis, MO 63134, USA.

Published: August 1997

Purpose: To optimize the performance (or efficacy) of a potential particulate blood pool agent for MR angiography by varying the particle size. The colloidal system under investigation was polyethylene glycol-stabilized manganese-substituted hydroxylapatite (MnHA-PEG).

Material And Methods: Several MnHA-PEG formulations were prepared using various length PEGs (MW = 140-2000). Products were characterized in vitro by dynamic light scattering (DLLS), field flow fractionation (FFF), and relaxometry; and in vivo by blood clearance kinetics in rabbits, and by analytical electron microscopy (EM).

Results: The particle size distribution (PSD) consisted only of small particles (approximately 10-nm diameter) when approximately 40 mo1% PEG was used. At approximately 20 mo1% PEG, larger particles (approximately 100 nm), which are aggregates of the small ones, were also present. The water proton relaxation profiles of the particles in plasma were different from that of the free Mn2+. In plasma, the large aggregates were broken down into the smaller particles which were stable. Although the small particles were efficient relaxation enhancing agents, they were cleared from the blood approximately 3 times faster than the approximately 100-nm diameter aggregates, probably as a consequence of leakage into the extravascular space. Variation of PEG size had no effect on particle characteristics or on blood clearance. Analytical EM of rabbit liver specimens indicated some retention of Mn in mitochondria at the time point when Mn content of other subcellular structures returned to baseline.

Conclusion: DLLS and FFF are complementary techniques for sizing particulate MR contrast media. Small MnHA particles are more efficient T1-shortening agents than large ones but they are prone to leakage from the vascular space. Within the MW range explored, the length of PEG molecule had no effect on blood clearance of the MnHA particles. Larger aggregates of MnHA-PEG break down into stable small particles in plasma. Mn clears from the subcellular structures within hepatocytes within 60 min after i.v. MnHA-PEG administration except from the mitochondria in which it appears to accumulate.

Download full-text PDF

Source

Publication Analysis

Top Keywords

blood clearance
12
small particles
12
manganese-substituted hydroxylapatite
8
blood pool
8
pool agent
8
particle size
8
particles
8
mo1% peg
8
particles plasma
8
stable small
8

Similar Publications

Alzheimer's disease (AD) is a neurodegenerative disease that primarily affects the elderly population and is the leading cause of dementia. Meanwhile, the vascular hypothesis suggests that vascular damage occurs in the early stages of the disease, leading to neurodegeneration and hindered waste clearance, which in turn triggers a series of events including the accumulation of amyloid plaques and Tau protein tangles. Non-coding RNAs (ncRNAs), including long noncoding RNAs (lncRNAs), microRNAs (miRNAs), and circular RNAs (circRNAs), have been found to be involved in the regulation of AD.

View Article and Find Full Text PDF

Hexafluoropropylene Oxide Trimer Acid Is an Unsafe Substitute to Perfluorooctanoic Acid Due to Its Remarkable Liver Accumulation in Mice Disclosed by Comprehensive Toxicokinetic Models.

Environ Sci Technol

January 2025

Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, P. R. China.

Hexafluoropropylene oxide trimer acid (HFPO-TA, CF(CFOCF(CF))COOH) is widely used as an alternative to perfluorooctanoic acid (PFOA), but whether it is a safe alternative requires further evaluation. In this study, male mice were exposed to three dosages (0.56, 2.

View Article and Find Full Text PDF

Context: Anemia is a medical condition resulting from a reduction in the number of red blood cells below the reference range. It is a major public health problem, particularly among adolescents, as it can have negative effects on cognitive performance, growth and reproduction. This study aims to assess the determinants of anemia among adolescents in schools in the city of Douala.

View Article and Find Full Text PDF

Ionizable polymeric micelles (IPMs) for efficient siRNA delivery.

Nat Commun

January 2025

Institute of Biomedical Engineering and Technology, Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, PR China.

Lipid nanoparticles (LNPs) are widely used for nucleic acid delivery but face challenges like limited targeting and accelerated blood clearance (ABC) effect. We design three ionizable oligomers (IOs) that, with polylactide-polyethylene glycol (PLA-PEG), form a potential siRNA delivery system, named Ionizable Polymeric Micelles (IPMs). The siRNA encapsulated IPMs escape from lysosomes upon cellular uptake, and silence the target gene.

View Article and Find Full Text PDF

Particle elasticity has widely been established to substantially influence immune cell clearance and circulation time of vascular-targeted carriers (VTCs). However, prior studies have primarily investigated interactions with macrophages, monocytic cell lines, and in vivo murine models. Interactions between particles and human neutrophils remain largely unexplored, although they represent a critical aspect of VTC performance.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!