A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A high-frequency shear device for testing soft biological tissues. | LitMetric

A high-frequency shear device for testing soft biological tissues.

J Biomech

Department of Bioengineering, University of Pennsylvania, Philadelphia 19104-6392, USA.

Published: July 1997

Accurate mechanical property data obtained at large shear deformations and high frequencies are a fundamental component of realistic numerical simulations of soft tissue injury. Although many commercial systems exist for testing shear properties of viscoelastic materials with properties similar to soft biological tissue, none are capable of determining properties at high loading rates necessary for modeling soft tissue injury. Previous custom shear testing systems, though capable of high-frequency loading, indirectly measure tissue properties by using analytical corrections for inertial effects. To address these limitations, a new custom designed oscillatory shear testing apparatus (STA) capable of testing soft biological tissues in simple shear has been constructed and validated. Through a proper selection of sample thickness, direct measurement of material properties at high frequencies is achieved mechanically without analytical inertial adjustments. The complex shear modulus of three mixtures of silicone gel with viscoelastic properties in a range similar to soft biological tissue was characterized in the STA over a dynamic frequency range of 20-200 Hz and validated with a commercially available solids rheometer. The frequency-dependent complex shear modulus measurements of the STA were within 10% of the rheometer measurements for all mixtures over the entire frequency range tested. The STA represents substantive improvement over current shear testing methods by providing direct measurement of the shear behavior of soft viscoelastic material at high frequencies. Mechanical property data gained from this device will provide a more realistic basis for numerical simulations of biological structures.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0021-9290(97)00023-7DOI Listing

Publication Analysis

Top Keywords

soft biological
16
high frequencies
12
shear testing
12
shear
9
testing soft
8
biological tissues
8
mechanical property
8
property data
8
numerical simulations
8
soft tissue
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!