Ca2+/calmodulin-dependent protein kinase IV (CaMKIV) is a monomeric multifunctional enzyme that is expressed only in subanatomical portions of the brain, T lymphocytes, and postmeiotic male germ cells. It is present in the nucleus of the cells in which it is expressed and can phosphorylate and activate the cyclic AMP response element binding proteins CREB and CREM tau in a manner analogous to protein kinase A. In the absence of Ca2+/calmodulin, CaMKIV is inactive. Activation requires three events: 1) binding of Ca2+/calmodulin; 2) phosphorylation of a single threonine residue present in the activation loop by a separate protein kinase that is also Ca2+/calmodulin-dependent; and 3) autophosphorylation of serine residues present in the extreme N-terminus that is required to relieve a novel form of autoinhibition. The gene for rat CaMKIV has been cloned and found to span 42 kb of DNA. The gene encodes three proteins: namely, the alpha and beta forms of CaMKIV that differ only in that the beta form contains a 28 amino acid N-terminal extension as well as calspermin. Calspermin is the C-terminal 169 amino acids of CaMKIV that binds Ca2+/calmodulin and is expressed only in postmeiotic male germ cells. The promoter for calspermin resides in the penultimate intron of the CaMKIV gene and is regulated by two CREs. This promoter is sufficient to faithfully target expression of a reporter gene to the postmeiotic male germ cells of transgenic mice. Transgene expression can be induced in cells from the transgenic mice that do not normally express it by transfection of CREM tau and CaMKIV. These data suggest that rearrangement of chromatin during meiosis together with the expression of CREM tau at high levels are sufficient to control expression of the calspermin promoter during spermatogenesis. On the other hand, the developmental expression of CaMKIV in brain and thymus appears to be controlled by thyroid hormone mediated via the thyroid hormone receptor alpha. In T lymphocytes, CaMKIV will phosphorylate CREB in response to signals that result in T cell activation. Transgenic mice that express a kinase minus mutant of CaMKIV specifically in thymic T cells show a marked reduction of total thymic cellularity. The remaining T cells undergo a much greater than normal rate of spontaneous apoptosis when placed in culture. These cells fail to generate the signals to phosphorylate CREB and produce significantly less of the cytokine Interleukin-2 (IL-2) in response to agents that either increase intracellular Ca2+ and/or activate protein kinase C. Collectively, the data suggest that CaMKIV may be involved both in preventing apoptosis during T cell development and also in the early cascade of events that is required to activate the mature T cells in response to a mitogenic stimulus.

Download full-text PDF

Source

Publication Analysis

Top Keywords

protein kinase
20
postmeiotic male
12
male germ
12
germ cells
12
crem tau
12
transgenic mice
12
camkiv
11
cells
9
ca2+/calmodulin-dependent protein
8
cells transgenic
8

Similar Publications

Cellular Cholesterol Loss Impairs Synaptic Vesicle Mobility via the CAMK2/Synapsin-1 Signaling Pathway.

Front Biosci (Landmark Ed)

January 2025

Department of Neurology, Jinshan Hospital, Fudan University, 201508 Shanghai, China.

Background: Neuronal cholesterol deficiency may contribute to the synaptopathy observed in Alzheimer's disease (AD). However, the underlying mechanisms remain poorly understood. Intact synaptic vesicle (SV) mobility is crucial for normal synaptic function, whereas disrupted SV mobility can trigger the synaptopathy associated with AD.

View Article and Find Full Text PDF

Background: Diabetes mellitus is associated with morphological and functional impairment of the heart primarily due to lipid toxicity caused by increased fatty acid metabolism. Extracellular signal-regulated protein kinases 1 and 2 (ERK1/2) have been implicated in the metabolism of fatty acids in the liver and skeletal muscles. However, their role in the heart in diabetes remains unclear.

View Article and Find Full Text PDF

Background: Hypoxia-inducible factor 1 alpha (HIF-1α) and its related vascular endothelial growth factor (VEGF) may play a significant role in atherosclerosis and their targeting is a strategic approach that may affect multiple pathways influencing disease progression. This study aimed to perform a systematic review to reveal current evidence on the role of HIF-1α and VEGF immunophenotypes with other prognostic markers as potential biomarkers of atherosclerosis prognosis and treatment efficacy.

Methods: We performed a systematic review of the current literature to explore the role of HIF-1α and VEGF protein expression along with the relation to the prognosis and therapeutic strategies of atherosclerosis.

View Article and Find Full Text PDF

Background: Myocardial ischemia-reperfusion (I/R) injury refers to cell damage that occurs as a consequence of the restoration of blood circulation following reperfusion therapy for cardiovascular diseases, and it is a primary cause of myocardial infarction. The search for nove therapeutic targets in the context of I/R injury is currently a highly active area of research. p70 ribosomal S6 kinase (S6K1) plays an important role in I/R induced necrosis, although the specific mechanisms remain unclear.

View Article and Find Full Text PDF

Background: Rheumatic heart disease (RHD), which is caused mainly by Group A Streptococcus, leads to fibrotic damage to heart valves. Recently, endothelial‒mesenchymal transition (EndMT), in which activin plays an important role, has been shown to be an important factor in RHD valvular injury. However, the mechanism of activin activity and EndMT in RHD valvular injury is not clear.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!