Molecular cloning of a peroxisomal Ca2+-dependent member of the mitochondrial carrier superfamily.

Proc Natl Acad Sci U S A

Klinik für Gesichts-und Kieferchirurgie, Universitätsspital Zürich, Frauenklinikstrasse 10, 8091 Zurich, Switzerland.

Published: August 1997

A cDNA from a novel Ca2+-dependent member of the mitochondrial solute carrier superfamily was isolated from a rabbit small intestinal cDNA library. The full-length cDNA clone was 3,298 nt long and coded for a protein of 475 amino acids, with four elongation factor-hand motifs located in the N-terminal half of the molecule. The 25-kDa N-terminal polypeptide was expressed in Escherichia coli, and it was demonstrated that it bound Ca2+, undergoing a reversible and specific conformational change as a result. The conformation of the polypeptide was sensitive to Ca2+ which was bound with high affinity (Kd approximately 0.37 microM), the apparent Hill coefficient for Ca2+-induced changes being about 2.0. The deduced amino acid sequence of the C-terminal half of the molecule revealed 78% homology to Grave disease carrier protein and 67% homology to human ADP/ATP translocase; this sequence homology identified the protein as a new member of the mitochondrial transporter superfamily. Northern blot analysis revealed the presence of a single transcript of about 3,500 bases, and low expression of the transporter could be detected in the kidney but none in the liver. The main site of expression was the colon with smaller amounts found in the small intestine proximal to the ileum. Immunoelectron microscopy localized the transporter in the peroxisome, although a minor fraction was found in the mitochondria. The Ca2+ binding N-terminal half of the transporter faces the cytosol.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC22978PMC
http://dx.doi.org/10.1073/pnas.94.16.8509DOI Listing

Publication Analysis

Top Keywords

member mitochondrial
12
ca2+-dependent member
8
carrier superfamily
8
n-terminal half
8
half molecule
8
molecular cloning
4
cloning peroxisomal
4
peroxisomal ca2+-dependent
4
mitochondrial carrier
4
superfamily cdna
4

Similar Publications

RetroSeeker reveals the characteristics, expression, and evolution of a large set of novel retrotransposons.

Adv Biotechnol (Singap)

October 2023

MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, Guangdong, China.

Retrotransposons are highly prevalent in most animals and account for more than 35% of the human genome. However, the prevalence, biogenesis mechanism and function of retrotransposons remain largely unknown. Here, we developed retroSeeker, a novel computational software that identifies novel retrotransposons from pairwise alignments of genomes and decodes their biogenesis, expression, evolution and potential functions.

View Article and Find Full Text PDF

Introduction: Chronic fetal hypoxia is commonly associated with fetal growth restriction and can predispose to respiratory disease at birth and in later life. Antenatal antioxidant treatment has been investigated to overcome the effects of oxidative stress to improve respiratory outcomes. We aimed to determine if the effects of chronic fetal hypoxia and antenatal antioxidant administration persist in the lung in early adulthood.

View Article and Find Full Text PDF

Phylogeny of the planthopper genus (Hemiptera, Delphacidae), with the description of two new species from South America.

Zookeys

January 2025

Fundación para el Estudio de Especies Invasivas (FuEDEI), Hurlingham, Buenos Aires, Argentina Fundación para el Estudio de Especies Invasivas (FuEDEI) Buenos Aires Argentina.

is a genus of Delphacidae widely distributed and mostly associated with plants in freshwater environments. Despite various taxonomic revisions and thorough research, the delimitation of the genus, its diversity, and its evolutionary history need to be further explored. Moreover, features originally considered distinctive of the genus exhibit variation and should be reassessed.

View Article and Find Full Text PDF

Prohibitins in infection: potential therapeutic targets.

Future Microbiol

January 2025

Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, P. R. China.

Prohibitins (PHBs) are members of a highly conserved family of proteins, including prohibitin1 and prohibitin2. These proteins are predominantly localized in mitochondria, the nucleus, and cell membranes, where they play critical roles in mitochondrial biogenesis, apoptosis, immune regulation, and other biological processes. Recent studies have demonstrated that both PHB1 and PHB2 can act as a complex or independently to participate in the pathogen infection process.

View Article and Find Full Text PDF

Ferroptosis, an iron-dependent form of programmed cell death characterized by excessive lipid hydroperoxides accumulation, emerges as a promising target in cancer therapy. Among the solute carrier (SLC) superfamily, the cystine/glutamate transporter system antiporter components SLC3A2 and SLC7A11 are known to regulate ferroptosis by facilitating cystine import for ferroptosis inhibition. However, the contribution of additional SLC superfamily members to ferroptosis remains poorly understood.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!