The ocular lens must continuously synthesize the cholesterol required to support membrane formation for its life-long growth. The roles of transcriptional and posttranscriptional mechanisms in controlling 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGR) protein levels in cultured lens epithelial cells were examined by measuring the effect of restricting exogenous cholesterol, endogenous cholesterol synthesis and mevalonate derived nonsterols upon HMGR protein and mRNA levels and upon the synthesis and degradation of HMGR protein. Sterols were restricted by culturing in lipoprotein deficient media and blocking 2,3-oxidosqualene cyclase with U18666A. Mevalonate derived nonsterols were additionally restricted by inhibition of HMGR activity with lovastatin. A 4-fold increase in HMGR protein levels due to restricting sterols with U18666A could be explained by comparably increased mRNA levels and enzyme protein synthesis. The very rapid turnover of HMGR protein (T(1/2) approximately 45 min) was unaffected. The additional restriction of mevalonate derived nonsterols increased HMGR protein levels to about 400-fold. A 10-fold slowing in the rate of enzyme degradation coupled with at least a 5-fold increase in mRNA levels likely accounted for this accumulated protein mass. The capacity of the nonsterol regulators to promote enzyme degradation appeared independent of sterols, since mevalonate restored rapid degradation of HMGR protein when 2,3-oxidosqualene cyclase activity was simultaneously blocked. Thus, in cultured lens epithelial cells, sterols appear to exert a modest influence on HMGR protein levels solely by suppressing transcription; whereas, mevalonate derived nonsterols exert major influence mainly by accelerating enzyme protein degradation. We speculate that nonsterol isoprenes might be important for preventing overexpression of cholesterol biosynthesis in the intact lens.

Download full-text PDF

Source
http://dx.doi.org/10.1006/exer.1997.0310DOI Listing

Publication Analysis

Top Keywords

hmgr protein
32
protein levels
16
mevalonate derived
16
derived nonsterols
16
lens epithelial
12
epithelial cells
12
mrna levels
12
protein
11
hmgr
9
3-hydroxy-3-methylglutaryl coenzyme
8

Similar Publications

The tubers of Curcuma kwangsiensis are regarded as an important medicinal material in China. In C. kwangsiensis cultivation, tuber expansion is key to yield and quality, but the regulatory mechanisms are not well understood.

View Article and Find Full Text PDF

Identification of 3-hydroxy-3-methylglutaryl monoacyl-coenzyme A reductase (HMGR) associated with the synthesis of terpenoids in Santalum album L.

Gene

March 2025

Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, The Chinese Academy of Sciences, Guangzhou 510650, China. Electronic address:

Santalum album is an economically important plant in the craft, spices and medicine industries. The main chemical constituents found in sandalwood essential oils are sesquiterpenes. 3-Hydroxy-3-methylglutaryl monoacyl-coenzyme A reductase (HMGR) is one of the rate-limiting enzymes required for the synthesis of sandal sesquiterpenes, but there are no studies on the HMGR gene in S.

View Article and Find Full Text PDF

Reprograming the Carbon Metabolism of Yeast for Hyperproducing Mevalonate, a Building Precursor of the Terpenoid Backbone.

J Agric Food Chem

January 2025

Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China.

Utilization of microbial hosts to produce natural plant products is regarded as a promising and sustainable approach. However, achieving highly efficient production of terpenoids using microorganisms remains a significant challenge. Here, mevalonate, a building block of terpenoids, was used as a demo product to explore the potential metabolic constraints for terpenoid biosynthesis in .

View Article and Find Full Text PDF

Tree peony (), as a popular ornamental plant worldwide, has a unique floral fragrance, and it is important in the pollination, ornamental, food, and fragrance product industries. However, the underlying molecular mechanisms for the synthesis of floral fragrance terpenoids in tree peony are not well understood, constraining their exploitation. 'Oukan' produces strong floral fragrance terpenoids with high ornamental value and excellent stress resistance and is considered a valuable model for studying tree peony floral fragrance formation.

View Article and Find Full Text PDF

Comparative transcriptomic analysis provides insights into the regulation of root-specific saponin production in Panax japonicus.

Sci Rep

November 2024

Laboratory of Medicinal Plant, Institute of Basic Medical Sciences, School of Basic Medicine, Biomedical Research Institute, Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan, 442000, China.

Panax japonicus, a traditional medicinal plant from the Araliaceae family, produces bioactive triterpenes with health benefits. In Traditional Chinese Medicine, its roots have been used, but the chemical basis of its medicinal use is unclear, particularly regarding the metabolism and regulation of triterpene saponin biosynthesis. This study employed an integrative approach using Ultra Performance Liquid Chromatography (UPLC) and transcriptome analysis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!