A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Disassembly of RanGTP-karyopherin beta complex, an intermediate in nuclear protein import. | LitMetric

Disassembly of RanGTP-karyopherin beta complex, an intermediate in nuclear protein import.

J Biol Chem

Laboratory of Cell Biology, Howard Hughes Medical Institute, The Rockefeller University, New York, New York 10021, USA.

Published: August 1997

We previously showed that RanGTP forms a 1:1 complex with karyopherin beta that renders RanGTP inaccessible to RanGAP (Floer, M., and Blobel, G. (1996) J. Biol. Chem. 271, 5313-5316) and karyopherin beta functionally inactive (Rexach, M., and Blobel, G. (1995) Cell 83, 683-692). Recycling of both factors for another round of function requires dissociation of the RanGTP-karyopherin beta complex. Here we show using BIAcoreTM, a solution binding assay, and GTP hydrolysis and exchange assays, with yeast proteins, that karyopherin beta and RanGTP are recycled efficiently in a reaction that involves karyopherin alpha, RanBP1, RanGAP, and the C terminus of the nucleoporin Nup1. We find that karyopherin alpha first releases RanGTP from karyopherin beta in a reaction that does not require GTP hydrolysis. The released RanGTP is then sequestered by RanBP1, and the newly formed karyopherin alphabeta binds to the C terminus of Nup1. Finally, RanGTP is converted to RanGDP via nucleotide hydrolysis when RanGAP is present. Conversion of RanGTP to RanGDP can also occur via nucleotide exchange in the presence of RanGEF, an excess of GDP, and if RanBP1 is absent. Additional nucleoporin domains that bind karyopherin alphabeta stimulate recycling of karyopherin beta and Ran in a manner similar to the C terminus of Nup1.

Download full-text PDF

Source
http://dx.doi.org/10.1074/jbc.272.31.19538DOI Listing

Publication Analysis

Top Keywords

karyopherin beta
20
karyopherin
9
rangtp-karyopherin beta
8
beta complex
8
gtp hydrolysis
8
karyopherin alpha
8
karyopherin alphabeta
8
terminus nup1
8
beta
7
rangtp
7

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!