This study was conducted to delineate potential sites of exit and duration of shedding of porcine reproductive and respiratory syndrome virus (PRRSV). Two experiments of 6 pigs each were conducted. Pigs were farrowed in isolation, weaned at 7 days of age, and housed in individual HEPA filtered isolation chambers. In each experiment, 3 pigs served as controls and 3 were inoculated intranasally with PRRSV (ATCC VR-2402) at 3 weeks of age. In a first experiment, on days 7, 14, 21, 28, 35, and 42 post-inoculation (p.i.), pigs were anesthetized and intubated. The following samples were collected: serum, saliva, conjunctival swabs, urine by cystocentesis, and feces. Upon recovery from anesthesia, the endotracheal tube was removed, rinsed, and the rinse retained. In the second experiment, the sampling schedule was expanded and serum, saliva, and oropharyngeal samples were collected from day 55 to day 124 p.i. at 14 day intervals. Virus was isolated in porcine alveolar macrophages up to day 14 from urine, day 21 from serum, day 35 from endotracheal tube rinse, day 42 from saliva, and day 84 from oropharyngeal samples. No virus was recovered from conjunctival swabs, fecal samples, or negative control samples. This is the first report of isolation of PRRSV from saliva. Virus-contaminated saliva, especially when considered in the context of social dominance behavior among pigs, may plan an important role in PRRSV transmission. These results support previous reports of persistent infection with PRRSV with prolonged recovery of virus from tonsils of swine.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7117148 | PMC |
http://dx.doi.org/10.1016/s0378-1135(97)00079-5 | DOI Listing |
Vet Rec
January 2025
Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, St. Paul, Minnesota, USA.
Background: Diagnosis of porcine reproductive and respiratory syndrome virus (PRRSV) infections can be accomplished using various sample types and testing methods. The objective of this study was to evaluate the feasibility of using air emission samples to detect the onset of PRRSV type 2 infections in growing pigs.
Methods: Air emissions and oral fluid samples were collected from three grow-finish barns, stocked with PRRSV-negative pigs every 2 weeks for 14-20 weeks.
Vet Sci
January 2025
College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China.
Since the first isolation of the porcine reproductive and respiratory syndrome virus 1 (PRRSV-1) BJEU06-1 strain from a Beijing pig farm in 2006, more and more PRRSV-1 isolates have been identified in China. In this study, we performed the routine detection of PRRSV-1 using 1521 clinical samples collected in 12 provinces/cities from February 2022 to May 2024. Only three lung samples from severely diseased piglets collected in January 2024 were detected as PRRSV-1-positive (0.
View Article and Find Full Text PDFVet Sci
January 2025
Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA.
Population-based sampling has improved pathogen monitoring in the US swine industry by increasing sensitivity while reducing costs. Postmortem tongue fluids (TF) have emerged as a practical option for monitoring porcine reproductive and respiratory syndrome virus (PRRSV) in breeding herds, but limited data exist on optimal storage conditions. This study evaluated PRRSV RNA detection via RT-qPCR in TF samples under various storage times, temperatures, and viral loads.
View Article and Find Full Text PDFVet Sci
January 2025
Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou 225012, China.
Porcine reproductive and respiratory syndrome (PRRS) causes significant economic losses to the swine industry. The killed PRRSV vaccine has been reported to be safe and could elicit humoral responses. The killed PRRSV vaccine with a high viral antigen load combined with robust adjuvants could provide good protection against the infection.
View Article and Find Full Text PDFVet Sci
January 2025
College of Biological and Pharmaceutical Engineering, Jilin Agricultural Science and Technology University, Jilin 132101, China.
To establish a rapid and sensitive detection method for the porcine reproductive and respiratory syndrome virus (PRRSV), gene-specific primers and a TaqMan probe were designed based on the gene of PRRSV, and a new stable fully pre-mixed reverse transcription real-time fluorescence quantitative PCR (RT-qPCR) reaction mixture was developed. A simple and rapid RT-qPCR detection method for PRRSV was developed by optimizing nucleic acid amplification conditions. The results showed that the method was able to specifically detect PRRSV without cross-reactivity with the other 11 porcine susceptible viruses.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!