Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Several diseases of varying etiology that are commonly associated with the loss of skeletal muscle mass were found to be associated with a decrease in muscular glutamate and glutathione levels and in glutamate uptake in the postabsorptive state. In view of the Na+ dependency and insulin responsiveness of glutamate transport we studied the postabsorptive glutamate exchange in more detail. Our study demonstrates a linkage between glutamate uptake and the export of other amino acids, suggesting that protein catabolism and the resulting coexport of amino acids plus Na+ substitute for insulin as a driving force for the Na+ gradient in the postabsorptive state. The regression function of the correlation between relative glutamate exchange and cumulative amino acid exchange in cancer patients was lower than that in non-tumor-bearing subjects, suggesting that cancer patients must release more amino acids to achieve the same glutamate uptake. In addition, cancer patients had a lower average cumulative amino acid exchange rate than non-tumor-bearing subjects, suggesting that the abnormally low relative glutamate exchange capacity of cancer patients results mainly from inadequate postabsorptive protein catabolism in the skeletal muscle tissue. Both cancer patients and non-tumor-bearing elderly subjects had higher arterial glutamate levels and alanine release than young subjects, indicative of a substantial glycolytic activity in the skeletal muscle. However, elderly non-tumor-bearing subjects showed, in contrast to cancer patients, in the postabsorptive state a stronger cumulative amino acid release and postabsorptive glutamate uptake than healthy young subjects. These changes are discussed in view of the age-related loss of skeletal muscle mass.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s001090050131 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!