Hyperlipoproteinemia is one of the phenotypic characteristics of the fat Zucker rat that carries a mutation in the leptin receptor gene. In the present study, we studied the regulation of hepatic low density lipoprotein (LDL) receptor expression in lean and fat Zucker rats. Compared with lean rats, the fat ones had a pronounced (approximately 60%) reduction in hepatic LDL receptor expression, whereas the levels of receptor messenger RNA (mRNA) were not reduced. Fat rats had increased levels of very low density lipoproteins and high density lipoproteins, but their plasma apo B100 within LDL was reduced. Challenge with 2% dietary cholesterol for 8 days suppressed hepatic LDL receptor expression in lean animals to similar levels as seen in fat ones, whereas the reduction in mRNA levels was much less pronounced. Treatment with ethynylestradiol (5 mg/kg BW per day) for 4 days strongly stimulated hepatic LDL receptor expression in both lean and fat rats; this treatment also increased LDL receptor mRNA levels, but to a lesser extent. In conclusion, the basal expression of hepatic LDL receptors is reduced in fat Zucker rats, but the capacity for the regulation of the receptors remains intact.

Download full-text PDF

Source
http://dx.doi.org/10.1210/endo.138.8.5337DOI Listing

Publication Analysis

Top Keywords

ldl receptor
20
fat zucker
16
receptor expression
16
hepatic ldl
16
low density
12
expression lean
12
fat
8
zucker rat
8
basal expression
8
regulation hepatic
8

Similar Publications

Background: Triple-negative breast cancer (TNBC) is the most aggressive subtype of breast cancer, with the worst prognosis among all subtypes. The impact of distinct cell subpopulations within the tumor microenvironment (TME) on TNBC patient prognosis has yet to be clarified.

Methods: Utilizing single-cell RNA sequencing (scRNA-seq) integrated with bulk RNA sequencing (bulk RNA-seq), we applied Cox regression models to compute hazard ratios, and cross-validated prognostic scoring using a GLMNET-based Cox model.

View Article and Find Full Text PDF

CD36 in liver diseases.

Hepatol Commun

January 2025

Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Department of Infectious Diseases, Institute for Viral Hepatitis, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China.

Cluster of differentiation 36 (CD36) is a transmembrane glycoprotein with the ability to bind to multiple ligands and perform diverse functions. Through the recognition of long-chain fatty acids, proteins containing thrombospondin structural homology repeat domains such as thrombospondin-1, and molecules with molecular structures consistent with danger- or pathogen-associated molecular patterns, CD36 participates in various physiological and pathological processes of the body. CD36 is widely expressed in various cell types, including hepatocytes and KCs in the liver, where it plays a pivotal role in lipid metabolism, inflammation, and oxidative stress.

View Article and Find Full Text PDF

Vesicular stomatitis virus (VSV) represents a significant advancement in therapeutic medicine, offering unique molecular and cellular characteristics that make it exceptionally suitable for medical applications. The bullet-shaped morphology, RNA genome organization, and cytoplasmic replication strategy provide fundamental advantages for both vaccine development and oncolytic applications. VSV's interaction with host cells through the low-density lipoprotein receptor (LDL-R) and its sophisticated transcriptional regulation mechanisms enables precise control over therapeutic applications.

View Article and Find Full Text PDF

In this study, we aimed to evaluate the potential effects of white tea (WT) in the atherosclerosis process characterized by oxidative stress, inflammation, and dyslipidemia. In our study, apolipoprotein E knockout (ApoE) mice (RRID: IMSR_JAX:002052) and C57BL/6J mice (RRID: IMSR_JAX:000664) were used. In the atherosclerosis model induced by an atherogenic diet (AD), WT was administered via oral gavage at two different concentrations.

View Article and Find Full Text PDF

PCSK9 Inhibitors: Focus on Evolocumab and Its Impact on Atherosclerosis Progression.

Pharmaceuticals (Basel)

November 2024

Department of Pharmacology and Toxicology, College of Pharmacy, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia.

This paper investigates the therapeutic use of PCSK9 inhibitors, particularly Evolocumab, as monoclonal antibodies for the treatment of atherosclerosis based on recent literature reviews. PCSK9 is an outstanding example of a breakthrough in medical science, with advancements in understanding its biological function driving substantial progress in atherosclerosis treatment. Atherosclerotic cardiovascular disease (ASCVD) is a leading global cause of mortality, imposing substantial financial burdens on healthcare systems.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!