PHF-tau proteins are the major components of the paired helical filament (PHF) from Alzheimer's disease (AD) neurofibrillary lesions. They differ both qualitatively and quantitatively in their degree of phosphorylation when compared with native tau proteins. However, little is known about the extent and heterogeneity of phosphorylated sites or the isoform composition and the isoelectric variants of PHF-tau. Therefore, we have characterized PHF-tau proteins from cortical brain tissue homogenates of 13 AD patients using two-dimensional gel electrophoresis. Whatever the topographical origin of brain tissue homogenates, PHF-tau proteins shared the same two-dimensional gel electrophoresis profile made of a tau triplet of 55, 64, and 69 kDa. A 74-kDa hyperphosphorylated tau component was detected particularly in the youngest and most severely affected AD patients. This additional component of hyperphosphorylated tau was shown to correspond to the longest brain tau isoform. Furthermore, the isoelectric points of PHF-tau from older AD patients were significantly more basic, indicating a lower degree of phosphorylation. These results show that the severity of neurofibrillary degeneration of AD is modulated by age.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1046/j.1471-4159.1997.69020834.x | DOI Listing |
Alzheimers Dement
December 2024
Department of Neurology, Mayo Clinic, Rochester, Minnesota, USA.
J Biol Chem
September 2024
Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA. Electronic address:
Alzheimer's disease (AD) and many other neurodegenerative diseases are characterized by pathological aggregation of the protein tau. These tau aggregates spread in a stereotypical spatiotemporal pattern in the brain of each disease, suggesting that the misfolded tau can recruit soluble monomers to adopt the same pathological structure. To investigate whether recruited tau indeed adopts the same structure and properties as the original seed, here we template recombinant full-length 0N3R tau, 0N4R tau, and an equimolar mixture of the two using sarkosyl-insoluble tau extracted from AD brain and determine the structures of the resulting fibrils using cryoelectron microscopy.
View Article and Find Full Text PDFActa Neuropathol
July 2024
Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, 127 S. San Vicente Blvd., A6212, Los Angeles, CA, 90048, USA.
J Neuropathol Exp Neurol
February 2024
Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, Illinois, USA.
This study examined the frequency of chronic traumatic encephalopathy-neuropathologic change (CTE-NC) and aging-related tau astrogliopathy (ARTAG) in community-dwelling older adults and tested the hypothesis that these tau pathologies are associated with a history of moderate-to-severe traumatic brain injury (msTBI), defined as a TBI with loss of consciousness >30 minutes. We evaluated CTE-NC, ARTAG, and Alzheimer disease pathologies in 94 participants with msTBI and 94 participants without TBI matched by age, sex, education, and dementia status TBI from the Rush community-based cohorts. Six (3%) of brains showed the pathognomonic lesion of CTE-NC; only 3 of these had a history of msTBI.
View Article and Find Full Text PDFJ Chem Inf Model
January 2024
Department of Pharmaceutical Chemistry, University of California, UCSF Genentech Hall Box 2280, 600 16th St Rm 518,San Francisco, California 94158, United States.
Discovering ligands for amyloid fibrils, such as those formed by the tau protein, is an area of great current interest. In recent structures, ligands bind in stacks in the tau fibrils to reflect the rotational and translational symmetry of the fibril itself; in these structures, the ligands make few interactions with the protein but interact extensively with each other. To exploit this symmetry and stacking, we developed SymDOCK, a method to dock molecules that follow the protein's symmetry.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!