The effect of temperature and thermal dose (equivalent minutes at 43 degrees C) on ultrasonic attenuation in fresh dog muscle, liver, and kidney in vitro, was studied over a temperature range from room temperature to 70 degrees C. The effect of temperature on ultrasonic absorption in muscle was also studied. The attenuation experiments were performed at 4.32 MHz, and the absorption experiments at 4 MHz. Attenuation and absorption increased at temperatures higher than 50 degrees C, and eventually reached a maximum at 65 degrees C. The rate of change of tissue attenuation as a function of temperature was between 0.239 and 0.291 Np m-1 MHz-1 degree C-1 over the temperature range 50-65 degrees C. A change in attenuation and absorption was observed at thermal doses of 100-1000 min, where a doubling of these loss coefficients was observed over that measured at 37 degrees C, presumably the result of changes in tissue composition. The maximum attenuation or absorption was reached at thermal dosages on the order of 10(7) min. It was found that the rate at which the thermal dose was applied (i.e., thermal dose per min) plays a very important role in the total attenuation absorption. Lower thermal dose rates resulted in larger attenuation coefficients. Estimation of temperature-dependent absorption using a bioheat equation based thermal model predicted the experimental temperature within 2 degrees C.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1121/1.419737 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!