Purification and partial characterization of an antigen specific to Lactobacillus brevis strains with beer spoilage activity.

FEMS Microbiol Lett

Brewing Research Laboratories, Kirin Brewery Co. Ltd., Yokohama, Japan.

Published: June 1997

Certain Lactobacillus brevis strains are resistant to hop-derived compounds such as isohumulone and are able to grow in beer. In this study, we raised an antiserum against our beer spoilage laboratory strain L. brevis 578 which reacted with 23 of 24 beer spoilers and two of 13 non-spoilers in precipitation reactions using 0.5 M NaOH cell extracts. This specific antigen to the beer spoilage L. brevis strains (SABSL) was demonstrated to be located beneath the S-layer proteins by agglutination reactions using S-layer protein-stripped cells obtained by treatment with 0.1 M NaOH. SABSL was purified using an affinity column coupled with an antibody against SABSL. The purified antigen was hydrolyzed with 2 M HCl and the hydrolyzate was analyzed by thin-layer chromatography and enzymatic analysis. The results showed that SABSL contains glycerol, phosphate, glycerophosphate, D-galactose and D-glucose. D-Galactose and D-glucose accounted for 4.7% and 0.1% of the composition, respectively. Melibiose, but not mannose, inhibited the precipitation reaction. Intense precipitation reactions were obtained with fractions which did not bind to the ConA-column. These results indicate that the immunodominant component of the SABSL is galactose and the SABSL determinant is most probably a galactosylated glycerol teichoic acid. The antiserum raised against the beer spoilage strain L. brevis 578 could distinguish between Pediococcus beer spoilers and non-spoilers in precipitation reactions.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1574-6968.1997.tb12566.xDOI Listing

Publication Analysis

Top Keywords

beer spoilage
16
brevis strains
12
precipitation reactions
12
lactobacillus brevis
8
strain brevis
8
brevis 578
8
beer spoilers
8
spoilers non-spoilers
8
non-spoilers precipitation
8
sabsl purified
8

Similar Publications

Microbial fermentation is a primary method by which a variety of foods and beverages are produced. The term refers to the use of microbes such as bacteria, yeasts, and molds to transform carbohydrates into different substances. Fermentation is important for preserving, enhancing flavor, and improving the nutritional quality of various perishable foods.

View Article and Find Full Text PDF

[Incidence of beer spoilage microorganisms in Buenos Aires microbreweries].

Rev Argent Microbiol

December 2024

Laboratorio de Biología Celular de Membranas (LBCM), Instituto de Fisiología, Biología Molecular y Neurociencias (IFIByNE-CONICET), FCEN-UBA, CABA, Argentina.

Microbial contaminations pose a significant concern within the brewing industry, exerting negative effects on the organoleptic quality of the product and leading to substantial economic losses. The exponential proliferation of craft breweries in Argentina in recent years has heightened the demand for constant improvements in processes to ensure excellence in beer production. However, the stringency of microbiological quality controls remains a vulnerable area.

View Article and Find Full Text PDF

Relationships Among Origin, Genotype, and Oenological Traits of Yeasts.

Int J Mol Sci

November 2024

Department of Life and Environmental Sciences, Polytechnic University of Marche, Via Brecce Bianche, 60131 Ancona, Italy.

yeasts play a relevant role in the fermentation industry, showing controversial behavior. There is growing interest in these yeasts in the fermentation industry as beer and bioethanol production, while in winemaking, they are considered spoilage microorganisms mainly used to produce ethyl phenols. These compounds may alter wine's organoleptic characteristics, leading to significant economic loss.

View Article and Find Full Text PDF

Obligate anaerobic beer spoilage bacteria have been a menace to the brewing industry for several decades. Technological advances in the brewing process aimed at suppressing aerobic spoilers gave rise to problems with obligate anaerobes. In previous studies, the metabolic spectrum of and species has been described, but their metabolism in the beer environment remains largely unknown.

View Article and Find Full Text PDF

Extracts from locally grown aromatic plants can enhance the geographical characteristics and microbial stability of craft beers, which are often not pasteurized or filtered. Here, the chemical and antimicrobial properties of aqueous extracts from leaves of L., L.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!