Activation of CDK4 is regulated, in part, by its association with a D-type cyclin. Conversely, CDK4 activity is inhibited when it is bound to the cyclin-dependent kinase inhibitor, p16(INK4A). To investigate the molecular basis of the interactions between CDK4 and cyclin D1 or p16(INK4A) we performed site-directed mutagenesis of CDK4. The interaction was examined using in vitro translated wild type and mutant CDK4 proteins and bacterially expressed cyclin D1 and p16 fusion proteins. As mutational analysis of CDC2 suggests that its cyclin binding domain is primarily located near its amino terminus, the majority of the mutations constructed in CDK4 were located near its amino terminus. In addition, CDK4 residues homologous to CDC2 sites involved in Suc1 binding were also mutated. Our analysis indicates that cyclin D1 and p16 binding sites are overlapping and located primarily near the amino terminus. All CDK4 mutations that resulted in decreased p16 binding capability also diminished cyclin D1 binding. In contrast, amino-terminal sequences were identified, including the PSTAIRE region, that are important for cyclin D1 binding but are not involved in p16 binding.

Download full-text PDF

Source
http://dx.doi.org/10.1074/jbc.272.30.18869DOI Listing

Publication Analysis

Top Keywords

p16 binding
16
cyclin p16
12
cyclin binding
12
located amino
12
amino terminus
12
cyclin
8
binding
8
cdk4
8
p16
5
identification cdk4
4

Similar Publications

NEAT1 regulates BMSCs aging through disruption of FGF2 nuclear transport.

Stem Cell Res Ther

January 2025

College & Hospital of Stomatology, Key Laboratory of Oral Diseases Research of Anhui Province, Anhui Medical University, Hefei, 230032, China.

Background: The aging of bone marrow mesenchymal stem cells (BMSCs) impairs bone tissue regeneration, contributing to skeletal disorders. LncRNA NEAT1 is considered as a proliferative inhibitory role during cellular senescence, but the relevant mechanisms remain insufficient. This study aims to elucidate how NEAT1 regulates mitotic proteins during BMSCs aging.

View Article and Find Full Text PDF

Cyclin-dependent kinases (CDKs), play essential roles in cell cycle progression. CDK activity is controlled through phosphorylation and inhibition by CDK inhibitors, such as p16. Mutations in p16 can lead to diseases such as cancer.

View Article and Find Full Text PDF

HIV OctaScanner: A Machine Learning Approach to Unveil Proteolytic Cleavage Dynamics in HIV-1 Protease Substrates.

J Chem Inf Model

January 2025

State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200030, P.R. China.

The rise of resistance to antiretroviral drugs due to mutations in human immunodeficiency virus-1 (HIV-1) protease is a major obstacle to effective treatment. These mutations alter the drug-binding pocket of the protease and reduce the drug efficacy by disrupting interactions with inhibitors. Traditional methods, such as biochemical assays and structural biology, are crucial for studying enzyme function but are time-consuming and labor-intensive.

View Article and Find Full Text PDF

Introduction: Hepatocellular carcinoma (HCC) is the sixth most common type of cancer and the second leading cause of cancer death worldwide [19]. Opioid growth factor (OGF) has been shown to exhibit antitumour potential, binding to OGF receptor (OGFr). Naltrexone (NTX), an OGFr antagonist, is considered as a potential anti-cancer agent.

View Article and Find Full Text PDF

Background: Lung cancer has high morbidity and mortality rates, which results in a poor prognosis. Cuproptosis is a novel cell death mechanism. The aim of this study was to examine the biological characteristics and clinical significance of genes associated with cuproptosis in lung adenocarcinoma (LUAD), and to understand the molecular mechanisms underlying the occurrence and progression of LUAD.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!