In avian species, the developmental fate of different-sex germ cells in the gonads is unclear. The present study attempted to confirm whether genetically female germ cells can differentiate into spermatozoa in male gonads using male germline chimeric chickens produced by the transfer of primordial germ cells (PGC), and employing molecular biological methods. As a result of Southern hybridization, specific sequences of the W chromosome (the female specific sex chromosome in birds) were detected in the genomic DNA extracted from one out of four male germline chimeric chickens. When two-color in situ hybridization was conducted on the spermatozoa of this germline chimera, 0.33% (average) of the nuclei of each semen sample showed the fluorescent signal indicating the presence of the W chromosome. The present study shows that female PGC can differentiate into spermatozoa in male gonads in the chicken. However, the ratio of produced W chromosome-bearing (W-bearing) spermatozoa fell substantially below expectations. It is therefore concluded that most of the W-bearing PGC could not differentiate into spermatozoa because of restricted spermatogenesis.

Download full-text PDF

Source
http://dx.doi.org/10.1046/j.1440-169x.1997.t01-2-00002.xDOI Listing

Publication Analysis

Top Keywords

germ cells
16
spermatozoa male
12
male gonads
12
differentiate spermatozoa
12
primordial germ
8
male germline
8
germline chimeric
8
chimeric chickens
8
pgc differentiate
8
spermatozoa
6

Similar Publications

CENP-E haploinsufficiency causes chromosome misalignment and spindle assembly checkpoint activation in the spermatogonia.

Andrology

December 2024

Department of Cell Biology and Genetics, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian, China.

Background: The establishment of kinetochore-microtubule attachment is essential for error-free chromosome alignment and segregation during cell division. Defects in chromosome alignment result in chromosome instability, birth defects, and infertility. Kinesin-7 CENP-E mediates kinetochore-microtubule capture, chromosome alignment, and spindle assembly checkpoint in somatic cells, however, mechanisms of CENP-E in germ cells remain poorly understood.

View Article and Find Full Text PDF

The evolution of green plants from aquatic to terrestrial environments is thought to have been facilitated by the acquisition of gametangia, specialized multicellular organs housing gametes. Antheridia and archegonia, responsible for producing and protecting sperm and egg cells, undergo formative cell divisions to produce a cell to differentiate into germ cell lineages and the other cell to give rise to surrounding structures. However, the genes governing this process remain unidentified.

View Article and Find Full Text PDF

Background: Local hen layers play a crucial role in egg production and the poultry industry. Optimizing their performance, egg quality, and overall health is of paramount importance.

Aim: This research aims to examine the effects of different feed forms on gut bacteria and subsequent effects on productivity, egg quality, and intestinal morphology in indigenous laying hens.

View Article and Find Full Text PDF

Effect of freezing and thawing on ejaculated sperm and subsequent pregnancy and neonatal outcomes in IVF.

Front Endocrinol (Lausanne)

December 2024

Department of Assisted Reproduction, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.

Background: Techniques for sperm cryopreservation have exhibited their potential in male fertility preservation. The use of frozen-thawed sperm in fertilization (IVF) cycles is widespread today. However, many studies reported that cryopreservation might have adverse effects on sperm DNA integrity, motility, and fertilization, probably due to cold shock, intra- and extracellular ice crystals, and excess reactive oxygen species (ROS).

View Article and Find Full Text PDF

Research advances in the construction of stem cell-derived ovarian organoids.

Stem Cell Res Ther

December 2024

Department of Gynecology and Obstetrics, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, 100730, People's Republic of China.

Ovarian organoids are essential in female reproductive medicine, enhancing our understanding of ovarian diseases and improving treatments, which benefits women's health. Constructing ovarian organoids involves two main processes: differentiating induced pluripotent stem cells (iPSCs) into germ and ovarian somatic cells to restore ovarian function and using extracellular matrix (ECM) to create a suitable ovarian microenvironment and scaffold. Although the technology is still in its early stages, future advancements will likely involve integrating high-throughput analysis, 3D-printed scaffolds, and efficient iPSC induction, driving progress in reproductive and regenerative medicine.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!