Expression of nitric oxide synthase III in human thyroid follicular cells: evidence for increased expression in hyperthyroidism.

Eur J Endocrinol

Division of Endocrinology, Metabolism and Molecular Medicine, Northwestern University, Chicago, Illinois 60611, USA.

Published: June 1997

AI Article Synopsis

Article Abstract

Nitric oxide mediates a wide array of cellular functions in many tissues. It is generated by three known isoforms of nitric oxide synthases (NOS). Recently, the endothelial isoform, NOSIII, was shown to be abundantly expressed in the rat thyroid gland and its expression increased in goitrous glands. In this study, we analyzed whether NOSIII is expressed in human thyroid tissue and whether levels of expression vary in different states of thyroid gland function. Semiquantitative RT-PCR was used to assess variations in NOSIII gene expression in seven patients with Graves' disease, one with a TSH-receptor germline mutation and six hypothyroid patients (Hashimoto's thyroiditis). Protein expression and subcellular localization were determined by immunohistochemistry (two normal thyroids, five multinodular goiters, ten hyperthyroid patients and two hypothyroid patients). NOSIII mRNA was detected in all samples: the levels were significantly higher in tissues from hyperthyroid patients compared with euthyroid and hypothyroid patients. NOSIII immunoreactivity was detected in vascular endothelial cells, but was also found in thyroid follicular cells. In patients with Graves' disease, the immunostaining was diffusely enhanced in all follicular cells. A more intense signal was observed in toxic adenomas and in samples obtained from a patient with severe hyperthyroidism due to an activating mutation in the TSH receptor. In multinodular goiters, large follicles displayed a weak signal whereas small proliferative follicles showed intense immunoreactivity near the apical plasma membrane. In hypothyroid patients, NOSIII immunoreactivity was barely detectable. In summary, NOSIII is expressed both in endothelial cells and thyroid follicular cells. The endothelial localization of NOSIII is consistent with a role for nitric oxide in the vascular control of the thyroid. NOSIII expression in thyroid follicular cells and the variations in its immunoreactivity suggest a possible role for nitric oxide in thyrocyte function and/or growth.

Download full-text PDF

Source
http://dx.doi.org/10.1530/eje.0.1360649DOI Listing

Publication Analysis

Top Keywords

nitric oxide
20
follicular cells
20
thyroid follicular
16
hypothyroid patients
16
patients nosiii
12
nosiii
9
thyroid
8
human thyroid
8
thyroid gland
8
nosiii expressed
8

Similar Publications

Deciphering the impact of NOS-derived NO on nitrogen metabolism and carbon flux in the heterocytous cyanobacterium Aphanizomenon flos-aquae 2012/KM1/D3.

Plant Physiol Biochem

January 2025

Laboratory of Microbial Genetics, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India. Electronic address:

Nitric oxide synthases (NOSs) are heme-based monooxygenases that catalyze the NADPH-dependent oxidation of L-arginine to produce NO and L-citrulline. Over the past five years, the identification and characterization of NOS homologs in cyanobacteria have significantly advanced our understanding of these enzymes. However, the precise mechanisms through which NOS-derived NO influences nitrogen metabolism remain incompletely elucidated.

View Article and Find Full Text PDF

Objective: The pathophysiology of delayed cerebral ischemia (DCI) is not fully elucidated. The lack of accurate diagnostic tools increases the probability of delayed diagnosis and timely treatment. The authors assessed the relationship of 8-iso-prostaglandin F2α (F2-IsoP) and oxidative stress biomarkers, nitric oxide synthase 3 (NOS3) and nicotinamide adenine dinucleotide phosphate (NADPH), with DCI after aneurysmal subarachnoid hemorrhage (aSAH).

View Article and Find Full Text PDF

The impact of islet neuronal nitric oxide synthase (nNOS) on glucose-stimulated insulin secretion (GSIS) is less understood. We investigated this issue by performing simultaneous measurements of the activity of nNOS versus inducible NOS (iNOS) in GSIS using isolated murine islets. Additionally, the significance of extracellular NO on GSIS was studied.

View Article and Find Full Text PDF

Macrophage metabolism is closely linked to their phenotype and function, which is why there is growing interest in studying the metabolic reprogramming of macrophages. Bioactive glass (BG) S53P4 is a bioactive material used especially in bone applications. Additionally, BG S53P4 has been shown to affect macrophages, but the mechanisms through which the possible immunomodulatory effects are conveyed remain unclear.

View Article and Find Full Text PDF

Immunomodulatory activity of Trypanosoma cruzi recombinant antigen combination TSA-1-C4 and Tc24-C4 induce activation of macrophages and CD8 T cells.

Parasitol Res

January 2025

Facultad de Química, Universidad Autónoma de Yucatán (UADY), Calle 43 S/N entre calle 96 y calle 40 Colonia Inalámbrica, Mérida, Yucatán, C.P. 97069, Mexico.

Chagas disease is a chronic infection caused by the protozoan parasite, Trypanosoma cruzi, with limited benefits of the currently available anti-parasitic chemotherapeutic approaches to halt the progression of heart disease. Recombinant TSA-1-C4 and Tc24-C4 proteins have been developed as promising antigen candidates for therapeutic vaccines, leading to propose them in combination as a bivalent recombinant protein strategy. In this study, we evaluated the immunomodulatory effect of the combined TSA-1-C4 and Tc24-C4 recombinant proteins by in vitro assays using murine macrophages.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!