Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Autophagic protein degradation includes bulk protein turnover with dynamic membrane reorganization, in which formation of novel organelles autophagosomes play key roles. We have shown that Saccharomyces cerevisiae performs the autophagy in the vacuole, a lytic compartment of yeast, in response to various kinds of nutrient starvation. Here we show that the APG1 gene, involved in the autophagic process in yeast, encodes a novel type of Ser/Thr protein kinase. Our results provide direct evidence for involvement of protein phosphorylation in regulation of the autophagic process. We found overall homology of Apglp with C. elegans Unc-51 protein, suggesting that homologous molecular mechanisms, conserved from unicellular to multicellular organisms, are involved in dynamic membrane flow.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s0378-1119(97)00084-x | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!