9-(2-phosphonylmethoxyethyl)guanine (PMEG) is an acyclic nucleoside phosphonate derivative that has demonstrated significant anticancer activity in a number of in vitro and in vivo animal model systems. In this study, we compared the cellular metabolism of PMEG and 9-(2-phosphonylmethoxyethyl)adenine (PMEA), a clinically active anti-HIV and antihepatitis agent, and the inhibitory activities of their putative active diphosphate derivatives, PMEGpp and PMEApp, respectively, toward human cellular DNA polymerases. PMEG was significantly more cytotoxic than PMEA against a panel of human leukemic cells. The diphosphate derivatives were the major metabolites formed in cells on both these agents, with PMEGpp reaching cellular concentration approximately 4-fold higher than that achieved for PMEApp. These differences in cellular accumulation of the diphosphate derivatives were not, however, sufficient to account for the 30-fold difference in cytotoxicity between the two analogs. PMEGpp was also at least a 7-fold more effective inhibitor of in vitro simian vacuolating virus 40 DNA replication system than that of PMEApp (IC50 = 4.6 microM). Studies with a defined primed DNA template showed that PMEGpp was a potent inhibitor of both human polymerases alpha and delta, two key enzymes involved in cellular DNA replication, whereas PMEApp inhibited these enzymes relatively poorly. From these studies, we can conclude that the factors that contribute to the enhanced antileukemic activity of PMEG derives both from its increased anabolic phosphorylation and the increased potency of the diphosphate derivative to target the cellular replicative DNA polymerases.

Download full-text PDF

Source
http://dx.doi.org/10.1124/mol.52.1.63DOI Listing

Publication Analysis

Top Keywords

dna replication
12
diphosphate derivatives
12
acyclic nucleoside
8
cellular dna
8
dna polymerases
8
dna
6
cellular
6
intracellular metabolism
4
metabolism action
4
action acyclic
4

Similar Publications

Pivotal roles of Plasmodium falciparum lysophospholipid acyltransferase 1 in cell cycle progression and cytostome internalization.

Commun Biol

January 2025

Department of Cellular Architecture Studies, Division of Shionogi Global Infectious Diseases Division, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki, Japan.

The rapid intraerythrocytic replication of Plasmodium falciparum, a deadly species of malaria parasite, requires a quick but constant supply of phospholipids to support marked cell membrane expansion. In the malarial parasite, many enzymes functioning in phospholipid synthesis pathway have not been identified or characterized. Here, we identify P.

View Article and Find Full Text PDF

Novel factors of cisplatin resistance in epithelial ovarian tumours.

Adv Med Sci

January 2025

Department of Medical Biology, Faculty of Medicine, Pavol Jozef Šafárik University, Košice, Slovak Republic. Electronic address:

Ovarian tumours are these days one of the biggest oncogynecological problems. In addition to surgery, the treatment of ovarian cancer includes also chemotherapy in which platinum preparations are one of the most used chemotherapeutic drugs. The principle of antineoplastic effects of cisplatin (cis-diamminedichloroplatinum(II), CDDP) is its binding to the DNA and the formation of adducts.

View Article and Find Full Text PDF

Quantitative chromatin protein dynamics during replication origin firing in human cells.

Mol Cell Proteomics

January 2025

Center for Chromosome Stability, Institute for Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2200, Denmark.

Accurate genome duplication requires a tightly regulated DNA replication program, which relies on the fine regulation of origin firing. While the molecular steps involved in origin firing have been determined predominantly in budding yeast, the complexity of this process in human cells has yet to be fully elucidated. Here, we describe a straightforward proteomics approach to systematically analyse protein recruitment to the chromatin during induced origin firing in human cells.

View Article and Find Full Text PDF

Sister chromatid cohesion through the lens of biochemical experiments.

Curr Opin Cell Biol

January 2025

Department of Chromosome Science, National Institute of Genetics, Mishima, 411-8540, Japan; Department of Genetics, Graduate University for Advanced Studies (SOKENDAI), Mishima, 411-8540, Japan. Electronic address:

Faithful chromosome segregation in eukaryotes relies on physical cohesion between newly duplicated sister chromatids. Cohesin is a ring-shaped ATPase assembly that mediates sister chromatid cohesion through its ability to topologically entrap DNA. Cohesin, assisted by several regulatory proteins, binds to DNA prior to DNA replication and then holds two sister DNAs together when it encounters the replication machinery.

View Article and Find Full Text PDF

Noncanonical inhibition of topoisomerase II alpha by oxidative stress metabolites.

Redox Biol

January 2025

University of Chicago, Department of Molecular Genetics and Cell Biology, 929 E. 57th Street, Chicago, IL, 60637, USA. Electronic address:

During its catalytic cycle, the homodimeric ATPase topoisomerase II alpha (TOP2A) cleaves double stranded DNA and remains covalently bound to 5' ends via tyrosine phosphodiester bonds. After passing a second, intact duplex through, TOP2A rejoins the break and releases from the DNA. Thereby, TOP2A can relieve strain accumulated during transcription, replication and chromatin remodeling and disentangle sister chromatids for mitosis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!