Retention of replication fidelity by a DNA polymerase functioning in a distantly related environment.

Proc Natl Acad Sci U S A

Laboratory of Molecular Genetics, National Institute of Environmental Health Sciences, P.O. Box 12233, Research Triangle Park, NC 27709, USA.

Published: July 1997

The primary structures of the replicative DNA polymerases (gp43s) of bacteriophage T4 and its distant phylogenetic relative RB69 are diverged, retaining only 61% identity and 74% similarity. Nevertheless, RB69 gp43 substitutes effectively for T4 gp43 in T4 DNA replication in vivo. We show here that RB69 gp43 replicates T4 genomes in vivo with a fidelity similar to that achieved by T4 gp43. Furthermore, replication by RB69 gp43 in the distantly related environment does not enhance the mutator activities of mutations in T4 genes that encode other components of the multienzyme DNA replicase. We also show that the fidelities of RB69 gp43 and T4 gp43 are both high in vitro and that they are similarly and sharply reduced in vivo by mutations that eliminate the 3'-exonucleolytic proofreading function. We conclude that gp43 interactions with the other replication proteins are probably nonessential for polymerase fidelity.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC21553PMC
http://dx.doi.org/10.1073/pnas.94.15.8042DOI Listing

Publication Analysis

Top Keywords

rb69 gp43
16
distantly environment
8
gp43
8
rb69
5
retention replication
4
replication fidelity
4
dna
4
fidelity dna
4
dna polymerase
4
polymerase functioning
4

Similar Publications

Understanding the origin of discrimination between rNTP and dNTP by DNA/RNA polymerases is important both for gaining fundamental knowledge on the corresponding systems and for advancing the design of specific drugs. This work explores the nature of this discrimination by systematic calculations of the transition state (TS) binding energy in RB69 DNA polymerase (gp43) and T7 RNA polymerase. The calculations reproduce the observed trend, in particular when they included the water contribution obtained by the water flooding approach.

View Article and Find Full Text PDF

Strand displacement synthesis by yeast DNA polymerase ε.

Nucleic Acids Res

September 2016

Department of Medical Biochemistry and Biophysics, Umeå University, SE-90187 Umeå, Sweden

DNA polymerase ε (Pol ε) is a replicative DNA polymerase with an associated 3'-5' exonuclease activity. Here, we explored the capacity of Pol ε to perform strand displacement synthesis, a process that influences many DNA transactions in vivo We found that Pol ε is unable to carry out extended strand displacement synthesis unless its 3'-5' exonuclease activity is removed. However, the wild-type Pol ε holoenzyme efficiently displaced one nucleotide when encountering double-stranded DNA after filling a gap or nicked DNA.

View Article and Find Full Text PDF

Utility of the bacteriophage RB69 polymerase gp43 as a surrogate enzyme for herpesvirus orthologs.

Viruses

January 2013

Department of Microbiology and Immunology, McGill University, Montreal, Quebec H3A 2B4, Canada.

Viral polymerases are important targets in drug discovery and development efforts. Most antiviral compounds that are currently approved for treatment of infection with members of the herpesviridae family were shown to inhibit the viral DNA polymerase. However, biochemical studies that shed light on mechanisms of drug action and resistance are hampered primarily due to technical problems associated with enzyme expression and purification.

View Article and Find Full Text PDF

5-Hydroxycytosine (5-OHC) is a stable oxidation product of cytosine associated with an increased frequency of C → T transition mutations. When this lesion escapes recognition by the base excision repair pathway and persists to serve as a templating base during DNA synthesis, replicative DNA polymerases often misincorporate dAMP at the primer terminus, which can lead to fixation of mutations and subsequent disease. To characterize the dynamics of DNA synthesis opposite 5-OHC, we initiated a comparison of unmodified dCMP to 5-OHC, 5-fluorocytosine (5-FC), and 5-methylcytosine (5-MEC) in which these bases act as templates in the active site of RB69 gp43, a high-fidelity DNA polymerase sharing homology with human replicative DNA polymerases.

View Article and Find Full Text PDF

Thymine glycol (Tg) is the most common oxidation product of thymine and is known to be a strong block to replicative DNA polymerases. A previously solved structure of the bacteriophage RB69 DNA polymerase (RB69 gp43) in complex with Tg in the sequence context 5'-G-Tg-G shed light on how Tg blocks primer elongation: The protruding methyl group of the oxidized thymine displaces the adjacent 5'-G, which can no longer serve as a template for primer elongation [Aller, P., Rould, M.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!