AI Article Synopsis

  • Studying proteasome inhibitors like MG115, calpain inhibitor I, and calpain inhibitor II revealed that MG115 completely blocked cell cycle transitions, particularly between G1/S and metaphase, causing delays in S phase progression.
  • Calpain inhibitor I had a weaker effect, while calpain inhibitor II and MG2M showed no impact on the cell cycle.
  • The effects of MG115 were reversible, as cell division resumed after replacing the treatment medium, indicating that proteasomal activity was crucial for normal cell cycle kinetics due to the accumulation of ubiquitinated proteins.

Article Abstract

We have studied specific effects of proteasome inhibition on cell cycle progression. To this end, the protease inhibitors MG115, calpain inhibitor I, and calpain inhibitor II, which display differential inhibitory effects on proteasomes, were used. Cell kinetic studies using bromodeoxyuridine pulse labeling revealed a complete block of G1/S and metaphase transitions and a delayed progression through S phase in cell cultures treated with 54 microM of MG115. Calpain inhibitor I in similar concentrations displayed a fivefold lower effect on cell cycle kinetics. Calpain inhibitor II and MG2M, which is a structural analogue of MG115, had no effect on the cell cycle. The inhibitory effect of MG115 treatment was reversible, because the cell cycle was immediately resumed when the MG115-containing culture medium was replaced by fresh culture medium. Because ubiquitinated proteins accumulated after MG115 treatment, it was confirmed that ubiquitin-dependent protein degradation, and thus proteasomal activity were blocked. By comparison of biochemical and in vitro proteasome inhibition experiments, it was hypothesized that chymotrypsin-like activity of proteasomes may play an important role in cell cycle kinetics.

Download full-text PDF

Source

Publication Analysis

Top Keywords

cell cycle
24
calpain inhibitor
16
cycle kinetics
12
proteasome inhibition
12
cell
8
mg115 calpain
8
mg115 treatment
8
culture medium
8
cycle
6
mg115
5

Similar Publications

High Areal Loading Silicon Nanoparticle-Based Lithium-Ion Batteries.

ACS Appl Mater Interfaces

January 2025

Electrical & Computer Engineering Department, Montana State University, Bozeman, Montana 59717, United States.

Interfacial mechanical stability between silicon (Si) and the current collector is crucial when high areal-loading of Si is demanded as intense stress develops at the interface due to its extreme volume alteration during the lithiation-delithiation process. Therefore, we propose using a thin, rough, porous, and highly conductive carbon nanotube network (CNT-N) as a buffer layer between the Si and current collector that provides abundant anchor sites for Si nanoparticles. The strong and elastic CNT-N, which is not involved directly in the lithiation process, reduces stress at interfaces between the Si and CNT-N and the CNT-N and current collector.

View Article and Find Full Text PDF

Optimal strategies for correcting merotelic chromosome attachments in anaphase.

Proc Natl Acad Sci U S A

February 2025

Courant Institute for Mathematical Sciences and Department of Biology, New York University, New York, NY 10012.

Accurate chromosome segregation in mitosis depends on proper connections of sister chromatids, through microtubules, to the opposite poles of the early mitotic spindle. Transiently, many inaccurate connections are formed and rapidly corrected throughout the mitotic stages, but a small number of merotelic connections, in which a chromatid is connected to both spindle poles, remain lagging at the spindle's equator in anaphase. Most of the lagging chromatids are eventually moved to one or the other pole, likely by a combination of microtubules' turnover and the brute force of pulling by the microtubules' majority from the one pole against the microtubules' minority from the other pole.

View Article and Find Full Text PDF

Cardiovascular and cardiometabolic diseases are leading causes of morbidity and mortality worldwide, driven in part by chronic inflammation. Emerging research suggests that the bone marrow microenvironment, or marrow niche, plays a critical role in both immune system regulation and disease progression. The bone marrow niche is essential for maintaining hematopoietic stem cells (HSCs) and orchestrating hematopoiesis.

View Article and Find Full Text PDF

In the ancient microbial Wood-Ljungdahl pathway, carbon dioxide (CO) is fixed in a multistep process that ends with acetyl-coenzyme A (acetyl-CoA) synthesis at the bifunctional carbon monoxide dehydrogenase/acetyl-CoA synthase complex (CODH/ACS). In this work, we present structural snapshots of the CODH/ACS from the gas-converting acetogen , characterizing the molecular choreography of the overall reaction, including electron transfer to the CODH for CO reduction, methyl transfer from the corrinoid iron-sulfur protein (CoFeSP) partner to the ACS active site, and acetyl-CoA production. Unlike CODH, the multidomain ACS undergoes large conformational changes to form an internal connection to the CODH active site, accommodate the CoFeSP for methyl transfer, and protect the reaction intermediates.

View Article and Find Full Text PDF

'Lanjingling' [China National Plant Variety Protection (CNPVP) 20200389] is the first new nationally registered cultivar of blue honeysuckle (Lonicera caerulea L.) developed by the Northeast Agricultural University for the fresh-fruit market (Zhu et al. 2022).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!