This article reviews some recent applications of time and frequency domain cross-correlation techniques to human motor unit recording. These techniques may be used to examine the pre-synaptic mechanisms involved in control of motoneuron activity during on-going motor tasks in man without the need for imposed and artificial perturbations of the system. In this review we examine, through several examples, areas in which insights have been gained into the basic neurophysiological processes that bring about motoneuron firing in man and illustrate how these processes are affected by central nervous system pathology. We will demonstrate that synchronization and coherence may be revealed between human motor unit discharges and give examples that support the hypothesis that these phenomena are generated by activity in a focused common corticospinal input to spinal motoneurons. Disruption of central motor pathways due to diseases of the nervous system leads to pathophysiological alterations in the activity of these pre-synaptic motoneuron inputs that can be revealed by cross-correlation analysis of motor unit discharges. The significance of these studies and outstanding questions in this field are discussed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s0165-0270(97)02248-6 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!