Matrix metalloproteinases (MMPs) play an important role in various physiological and pathological conditions such as tissue remodeling, and cancer cell invasion and metastasis. The aim of this study was to determine the effect of the antitumor compounds cis-dichlorodiammine platinum (ii) (cisplatin) and 1, 3 bis (2-chloroethyl)-1-nitrosourea (BCNU) on 72-kDa type IV collagenase activity (MMP-2) in human gliomas. Human glioblastoma cell lines were treated with cisplatin (25 microM), and BCNU (50 microM), and the levels of MMP-2 were estimated in serum-free conditioned medium and in cell extracts at different time intervals. Gelatin zymography revealed increased levels of MMP-2 in serum-free conditioned medium and in cell extracts of untreated glioblastoma cell cultures during a 72-h period. In contrast, MMP-2 levels were significantly decreased in cisplatin-treated cells both in conditioned medium and cell extracts. However, no significant changes of MMP-2 levels were noted in BCNU-treated cells. Quantitative analysis of MMP-2 enzyme activity by densitometry and amount of MMP-2 protein by ELISA showed significantly decreased levels of MMP-2 in cisplatin-treated cells compared to BCNU and untreated glioblastoma cells. The results indicate that decreased levels of MMP-2 might represent an additional mechanism by which cisplatin provides its antineoplastic effects.

Download full-text PDF

Source
http://dx.doi.org/10.1023/a:1018442003163DOI Listing

Publication Analysis

Top Keywords

levels mmp-2
16
mmp-2 levels
12
glioblastoma cell
12
conditioned medium
12
medium cell
12
cell extracts
12
mmp-2
10
human glioblastoma
8
cell lines
8
serum-free conditioned
8

Similar Publications

Background: Rheumatoid arthritis (RA) is a long-term inflammatory autoimmune disease that damages cartilage and synovial membranes while also affecting bones and joints. The aim of the current study was to investigate the antiarthritic effect of gossypin against collagen-induced arthritis (CIA) in rats.

Methods: Intraperitoneal administration of Type II collagen (2 mg/mL) was used to induce arthritis in the rats, followed by oral administration of gossypin (5, 10 and 15 mg/kg) for 28 days.

View Article and Find Full Text PDF

Background: Uterine Corpus Endometrial Carcinoma (UCEC) is a prevalent gynecologic malignancy with complex molecular underpinnings. This study identifies key woundhealing genes involved in UCEC and elucidates their roles through a comprehensive analysis.

Methods: In silico and in vitro experiments.

View Article and Find Full Text PDF

Tuberculosis (TB) triggers a robust immune response, which leads to significant destruction of the lung tissue at the site of infection, aiding in the transmission of (Mtb) to the hosts. The excessive inflammatory response contributes heavily to extracellular matrix (ECM) damage, which is linked to high mortality rates among TB patients. Matrix metalloproteinases (MMPs), particularly MMP-2 and MMP-9, are pivotal in the breakdown of the ECM, worsening tissue destruction.

View Article and Find Full Text PDF

Cerebral aneurysms (CA) are a serious condition characterized by the bulging of a blood vessel in the brain, which can lead to rupture and life-threatening bleeding. The pathophysiology of CA involves complex processes, particularly inflammation and macrophage infiltration. Phoenixin-14 (PNX-14) is a neuropeptide with diverse biological effects, including roles in reproduction, energy homeostasis, and inflammation.

View Article and Find Full Text PDF

The prevalent tumor-supporting glioblastoma-associated macrophages (GAMs) promote glioblastoma multiforme (GBM) progression and resistance to multiple therapies. Repolarizing GAMs from tumor-supporting to tumor-inhibiting phenotype may troubleshoot. However, sufficient accumulation of drugs at the GBM site is restricted by blood-brain barrier (BBB).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!