The purpose of the study was to develop an equation to predict the oxygen cost of cycle ergometry. Forty subjects performed an incremental cycle ergometer test on three occasions at 50, 70, or 90 rpm in a counterbalanced order. Work rate was incremented every 5 or 6 min when steady rate values were achieved. To ensure accurate work rates, ergometer resistance was calibrated and flywheel revolutions were electronically measured. Oxygen consumption was measured with a computer interfaced system which provided results every minute. Oxygen consumption (mL.min-1) was the dependent variable, and independent variables were work rate (WR in kgm.min-1), pedal rate (rpm), weight (Kg), and gender (males, 0; females, 1). The following nonlinear equation was selected; VO2 = 0.42.WR1.2 + 0.00061.rpm3 + 6.35.Wt + 0.1136.RPM50.WR-0.10144.RPM90-WR-52-Gender, R2 = 0.9961, Sy.x = 106 mL.min-1, where RPM50: 50 rpm = 1, and RPM90: 90 rpm = 1, else = 0. It was concluded that the oxygen cost of cycle ergometry is nonlinearly related to work rate and pedal rate, linearly related to weight, and that females use less oxygen for a particular work rate.

Download full-text PDF

Source
http://dx.doi.org/10.1097/00005768-199706000-00007DOI Listing

Publication Analysis

Top Keywords

work rate
20
oxygen consumption
12
cycle ergometry
12
pedal rate
12
rate
9
ergometry nonlinearly
8
nonlinearly work
8
rate pedal
8
oxygen cost
8
cost cycle
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!