Self-association of Band 3, the human erythrocyte anion exchanger, in detergent solution.

Biochim Biophys Acta

MRC Group in Membrane Biology, Department of Medicine, University of Toronto, Canada.

Published: June 1997

Dimeric Band 3 purified in n-dodecyl octaethyleneglycol (C12E8) underwent an irreversible, temperature-dependent association, resulting in a complex with a Stokes radius slightly larger than a native tetramer, before forming a higher molecular weight aggregate. Self-association occurred with a half-time of about 1 h at 37 degrees C but did not occur at 0 degrees C after several days. No change in the secondary structure of Band 3, as observed by circular dichroism, occurred during the association process. However, self-association of Band 3 was accompanied by loss of the stilbene disulfonate inhibitor binding site. No association or loss of inhibitor binding occurred with the dimeric membrane domain under similar incubation conditions. The membrane domain dimer was also stable over a wide range of pH (5.5-9.5) and buffer conditions, while Band 3 aggregated below pH 6.5. Inhibitors of anion transport, which stabilize the membrane domain, slowed the association. Band 3, depleted of phospholipids by extensive washing of resin-bound protein with detergent or, incubated with excess detergent, was more prone to aggregation. The membrane domain also showed some aggregation when depleted of lipids. Preparations could be stabilized by adding dimyristoylphosphatidylcholine (DMPC) prior to the 37 degrees C incubation. The effect of inhibitors and DMPC was additive, with a combination of 1 mM 4,4'-dinitrostilbene-2,2'-disulfonate (DNDS) and 1:1 (wt/wt) DMPC:Band 3 stabilizing 90% of the protein to a 24-h incubation at 37 degrees C. The results suggest that self-association of Band 3 dimers is promoted by the cytoplasmic domain but results in alterations to the membrane domain involving the loss of essential phospholipids. Addition of phospholipid or inhibitors to Band 3 results in a stable preparation of the intact protein that may be suitable for crystallization studies.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0005-2736(97)00033-3DOI Listing

Publication Analysis

Top Keywords

membrane domain
20
self-association band
12
inhibitor binding
8
band
7
domain
6
membrane
5
self-association
4
band human
4
human erythrocyte
4
erythrocyte anion
4

Similar Publications

How SNARE proteins generate force to fuse membranes.

Biophys J

January 2025

Department of Chemical Engineering, Columbia University, New York, NY 10027. Electronic address:

Membrane fusion is central to fundamental cellular processes such as exocytosis, when an intracellular machinery fuses membrane-enclosed vesicles to the plasma membrane for contents release. The core machinery components are the SNARE proteins. SNARE complexation pulls the membranes together, but the fusion mechanism remains unclear.

View Article and Find Full Text PDF

Sarcoplasmic/endoplasmic reticulum Ca-ATPase1 (SERCA1) is responsible for the clearance of cytosolic Ca in skeletal muscle. Due to its vital importance in regulating Ca homeostasis, the regulation of SERCA1 has been intensively studied. Small ankyrin 1 (sAnk1, Ank1.

View Article and Find Full Text PDF

Modification of Liposomal Properties by an Engineered Gemini Surfactant.

Langmuir

January 2025

Department of Physics, Virginia Tech, Blacksburg, Virginia 24061, United States.

Lipid membranes form the primary structure of cell membranes and serve as configurable interfaces across numerous applications including biosensing technologies, antifungal treatments, and therapeutic platforms. Therefore, the modification of lipid membranes by additives has important consequences in both biological processes and practical applications. In this study, we investigated a nicotinic-acid-based gemini surfactant (NAGS) as a chemically tunable molecular additive for modulating the structure and phase behavior of liposomal membranes.

View Article and Find Full Text PDF

Plant immunity is largely governed by nucleotide-binding leucine-rich repeat receptor (NLR). Here, we examine the molecular activation and inhibition mechanisms of the wheat CC-type NLR , a previously proposed candidate for the resistance gene. Though recent studies have identified as the true gene, Yr10 remains an important NLR in understanding NLR-mediated immunity in wheat.

View Article and Find Full Text PDF

The path to survival for pathogenic organisms is not straightforward. Pathogens require a set of enzymes for tissue damage generation and to obtain nourishment, as well as a toolbox full of alternatives to bypass host defense mechanisms. Our group has shown that the parasitic protist encodes for 14 sphingomyelinases (SMases); one of them (acid sphingomyelinase 6, aSMase6) is involved in repairing membrane damage and exhibits hemolytic activity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!