Mapping the ends of transmembrane segments in a polytopic membrane protein. Scanning N-glycosylation mutagenesis of extracytosolic loops in the anion exchanger, band 3.

J Biol Chem

Medical Research Council of Canada Group in Membrane Biology, Departments of Medicine and Biochemistry, University of Toronto, Toronto, Ontario, Canada M5S 1A8.

Published: July 1997

Band 3, the anion exchanger of human erythrocytes, contains up to 14 transmembrane (TM) segments and has a single endogenous site of N-glycosylation at Asn642 in extracellular (EC) loop 4. The requirements for N-glycosylation of EC loops and the topology of this polytopic membrane protein were determined by scanning N-glycosylation mutagenesis and cell-free translation in a reticulocyte lysate supplemented with microsomal membranes. The endogenous and novel acceptor sites located near the middle of the 35 residue EC loop 4 were efficiently N-glycosylated; however, no N-glycosylation occurred at sites located within sharply defined regions close to the adjacent TM segments. Acceptor sites located in the center of EC loop 3, which contains 25 residues, were poorly N-glycosylated. Expansion of this loop with a 4-residue insert containing an acceptor site increased N-glycosylation. Acceptor sites located in short (<10 residues) loops (putative EC loops 1, 2, 6, and 7) were not N-glycosylated; however, insertion of EC loop 4 into EC loops 1, 2, or 7, but not 6, resulted in efficient N-glycosylation. Acceptor sites in putative intracellular (IC) loop 5 exhibited a similar pattern of N-glycosylation as EC loop 4, indicating a lumenal disposition during biosynthesis. To be efficiently N-glycosylated, EC loops in polytopic membrane proteins must be larger than 25 residues in size, with acceptor sites located greater than 12 residues away from the preceding TM segment and greater than 14 residues away from the following TM segment. Application of this requirement allowed a significant refinement of the topology of Band 3 including a more accurate mapping of the ends of TM segments. The strict distance dependence for N-glycosylation of loops suggests that TM segments in polytopic membrane proteins are held quite precisely within the translocation machinery during the N-glycosylation process.

Download full-text PDF

Source
http://dx.doi.org/10.1074/jbc.272.29.18325DOI Listing

Publication Analysis

Top Keywords

sites located
16
acceptor sites
12
transmembrane segments
8
polytopic membrane
8
membrane protein
8
scanning n-glycosylation
8
n-glycosylation mutagenesis
8
anion exchanger
8
n-glycosylation
6
mapping ends
4

Similar Publications

Assessing Mitigation Translocation as a Tool to Reduce Human-great Horned owl Conflicts.

Environ Manage

January 2025

United States Department of Agriculture, Animal Plant Health Inspection Service, Wildlife Services, Fort Collins, CO, USA.

The great horned owl (Bubo virginianus) is a generalist predator that inhabits wide-ranging territories that are relatively stable throughout the year. These owls are also involved in a variety of human-owl conflicts, including killing of domestic poultry, predating colonially nesting seabirds and shorebirds, and pose a hazard to safe aircraft operations. Managing these conflict situations presents unique challenges as great horned owls are nocturnally active and occupy a wide range of habitats.

View Article and Find Full Text PDF

Developing high-energy-density lithium-sulfur batteries faces serious polysulfide shuttle effects and sluggish conversion kinetics, often necessitating the excessive use of electrolytes, which in turn adversely affects battery performance. Our study introduces a meticulously designed electrocatalyst, Cu-CeO@N/C, to enhance lean-electrolyte lithium-sulfur battery performance. This catalyst, featuring in situ synthesized Cu clusters, regulates oxygen vacancies in CeO and forms Cu-CeO heterojunctions, thereby diminishing sulfur conversion barriers and hastening reaction kinetics through the generation of S/S intermediates.

View Article and Find Full Text PDF

Oligometastatic prostate cancer (OMPC) represents an intermediate state in the progression from localized disease to widespread metastasis when the radiographically significant sites are limited in number and location. With no clear consensus on a definition, its diagnostic significance and associated optimal therapeutic approach remain controversial, posing a significant challenge for clinicians. The current standard of care for metastatic disease is to start systemic therapy; however, active surveillance and targeted radiotherapy have become attractive options to mitigate the long-term effects of androgen deprivation therapy (ADT).

View Article and Find Full Text PDF

The Molecular Biology of Placental Transport of Calcium to the Human Foetus.

Int J Mol Sci

January 2025

Department of Clinical Biochemistry, University Hospital Southampton NHS Foundation Trust, Southampton General Hospital, Southampton SO16 6YD, UK.

From fertilisation to delivery, calcium must be transported into and within the foetoplacental unit for intracellular signalling. This requires very rapid, precisely located Ca transfers. In addition, from around the eighth week of gestation, increasing amounts of calcium must be routed directly from maternal blood to the foetus for bone mineralisation through a flow-through system, which does not impact the intracellular Ca concentration.

View Article and Find Full Text PDF

Apurinic/apyrimidinic (AP) sites are endogenous DNA lesions widespread in human cells. Having no nucleobases, they are noncoding and promutagenic. AP site repair is generally initiated through strand incision by AP endonuclease 1 (APE1).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!