Exposure to blast overpressure can typically inflict generalized damage on major organ systems, especially gas-containing organs such as the lungs and the gastrointestinal tract. The purpose of the present study was to use rat's food intake and exercise wheel running as behavioral correlates of the perhaps more subtle damage to these organ systems induced by sublethal blast overpressure. Toward this end, all rats were exposed to a 12-h light/dark cycle and food was available only in the dark period. Prior to exposure, rats in the (E)xercise group were required to execute five rotations of an activity wheel for a food pellet; wheel turns that occurred at times other than when a rat was feeding were recorded separately and labeled exercise running. In the (S)edentary and (A)nesthesia groups, wheel running was not possible and rats were required to execute five leverpresses for a single pellet. A compressed air-driven shock tube was used to expose rats to a supra-atmospheric wave of air pressure. The tube was separated into two sections by a polyester membrane, the thickness of which determined peak and duration of overpressure. All rats were anesthetized with 50 mg/kg of phenobarbital. After reaching a deep plane of anesthesia, they were individually tied in a stockinet across one end of the shock tube. In preliminary tests, the membrane thickness was 1000 (A)ngstroms and rats in Group L(ethality) were exposed to a 129 kPa (peak amplitude) wave of overpressure. Three of six rats survived exposure to this peak pressure; pathology was evident in the lungs and gastrointestinal tract of all non-survivors. Rats in Groups E and S were tested with a 500 A membrane, which resulted in an 83 kPa peak amplitude. All rats survived exposure to this lower peak pressure. On the day of exposure to blast, the relative reduction of intake during the first 3 h of the dark period was significantly greater for Group E than for Groups S and A; the intake of Groups E and S remained reduced for four additional recovery days. Bodyweight was not significantly affected. Exercise wheel running also was reduced significantly on the day of exposure and during subsequent recovery days. These preliminary findings suggest that exposure to sublethal blast overpressure can reduce food consumption and exercise performance, perhaps as a consequence of damage to the gastrointestinal tract and lungs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s0300-483x(97)03656-1 | DOI Listing |
Immun Inflamm Dis
January 2025
Department of Medical Biochemistry, Institute of Health, Dambi Dollo University, Dambi Dolo, Ethiopia.
Background: The pathomechanism of blast traumatic brain injury (TBI) and blunt TBI is different. In blast injury, evidence indicates that a single blast exposure can often manifest long-term neurological impairments. However, its pathomechanism is still elusive, and treatments have been symptomatic.
View Article and Find Full Text PDFJ Neuropathol Exp Neurol
January 2025
Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, United States.
In modern war theaters, exposures to blast overpressures are one of the most common causes of brain injury. These pervasive events result in acute and chronic cerebrovascular degenerative processes. Using a rat model of blast-induced mild traumatic brain injury, we identified intramural periarterial hematomas as early primary acute lesions induced by blast exposures.
View Article and Find Full Text PDFEur J Trauma Emerg Surg
January 2025
Department of Military Traffic Injury Prevention and Control, Daping Hospital, Army Medical University, Chongqing, 400042, China.
Introduction: While there is evidence supporting the use of ultrasound for real-time monitoring of primary blast lung injury (PBLI), uncertainties remain regarding the timely detection of early PBLI and the limited data correlating it with commonly used clinical parameters. Our objective is to develop a functional incapacity model for PBLI that better addresses practical needs and to verify the early diagnostic effectiveness of lung ultrasound in identifying PBLI.
Methods: We selected six healthy male pigs to develop an animal model using a bio-shock tube (BST-I).
Surgery
January 2025
Senior Department of Burns & Plastic Surgery, Institute of Burn in the Fourth Medical Centre, Chinese PLA General Hospital, Beijing, China. Electronic address:
Background: Primary blast lung injury is a common and severe consequence of explosion events, characterized by immediate and delayed effects such as apnea and rapid shallow breathing. The overpressure generated by blasts leads to alveolar and capillary damage, resulting in ventilation-perfusion mismatch and increased intrapulmonary shunting. This reduces the effective gas exchange area, causing hypoxemia and hypercapnia.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
McKnight Brain Institute, University of Florida, Gainesville, FL 32610, USA.
Military breachers are routinely exposed to repetitive low-level blast overpressure, placing them at elevated risk for long-term neurological sequelae. Mounting evidence suggests that circulating brain-reactive autoantibodies, generated following CNS injury, may serve as both biomarkers of cumulative damage and drivers of secondary neuroinflammation. In this study, we compared circulating autoantibody profiles in military breachers ( = 18) with extensive blast exposure against unexposed military controls ( = 19).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!