L-2-chloropropionic acid inhibits glutamate and aspartate release from rat cerebellar slices but does not activate cerebellar NMDA receptors: implications for L-2-chloropropionic acid-induced neurotoxicity.

Neurotoxicology

Neurotoxicology Research Group, ZENECA Central Toxicology Laboratory, ZENECA Pharmaceuticals, Alderley Park, Macclesfield, Cheshire, UK.

Published: September 1997

L-2-Chloropropionic acid (L-CPA), when orally administered at single high dose to rats produces a selective lesion in the cerebellum involving destruction of a high proportion of granule cells by a mechanism which involves N-methyl-D-aspartate (NMDA) receptors. Receptor binding studies demonstrated that L-CPA a had low affinity at the glutamate and glycine binding sites at NMDA receptors (530-660 microM), respectively, whereas L-CPA did not displace [3H]AMPA, [3H]NBQX or [3H]kainate from AMPA or kainate receptors. Whole cell-patch clamp experiments using cultured granule cells failed to demonstrate changes in membrane potential of cultured granule cells when either L-CPA (0.25 or 1 microM) was added alone to the bathing solution, or in combination with glycine (10 microM). Furthermore L-CPA did not alter the magnitude of the inward current produced by application of NMDA (100 microM)) to cultured granule cells, in the presence of glycine, as measured by patch clamp techniques. Experiments were also performed to discover whether L-CPA may alter the release of the excitatory amino acids from the cerebellum, which may then indirectly alter activity at glutamate receptors, leading to neuronal cell death. L-CPA (2 mM) did not affect either basal or stimulated (electrical or high potassium) endogenous aspartate release from superfused cerebellar slices nor did it alter the basal or stimulated release of [3H]aspartate from preloaded slices when introduced into the superfusion medium over 30 min. However, when cerebellar slices were preincubated with 2 mM L-CPA for 2 h at concentrations that are known to be neurotoxic to the brain in vivo, but not in vitro, the stimulated endogenous glutamate and aspartate net release was significantly attenuated, as compared to controls. Basal release was not significantly affected by the introduction of L-CPA-induced cerebellar neurotoxicity may be related to the inhibition of excitatory amino acid release from the cerebellum. In conclusion, although L-CPA does not appear to directly alter NMDA receptor activity the L-CPA-induced cerebellar neurotoxicity may be related to the inhibition of excitatory amino acid release from the cerebellum.

Download full-text PDF

Source

Publication Analysis

Top Keywords

granule cells
16
cerebellar slices
12
nmda receptors
12
cultured granule
12
excitatory amino
12
l-cpa
9
l-2-chloropropionic acid
8
glutamate aspartate
8
release
8
aspartate release
8

Similar Publications

The generation of retinal models from human induced pluripotent stem cells holds significant potential for advancing our understanding of retinal development, neurodegeneration, and the in vitro modeling of neurodegenerative disorders. The retina, as an accessible part of the central nervous system, offers a unique window into these processes, making it invaluable for both study and early diagnosis. This study investigates the impact of the Frontotemporal Dementia-linked IVS 10 + 16 MAPT mutation on retinal development and function using 2D and 3D retinal models derived from human induced pluripotent stem cells.

View Article and Find Full Text PDF

Interaction and cleavage of cell and plasma proteins by the platelet-aggregating serine protease PA-BJ of Bothrops jararaca venom.

Biochimie

January 2025

Laboratory of Applied Toxinology, Center of Toxins, Immune-Response and Cell Signaling (CeTICS), Butantan Institute, São Paulo, Brazil. Electronic address:

PA-BJ is a serine protease present in Bothrops jararaca venom that triggers platelet aggregation and granule secretion by activating the protease-activated receptors PAR-1 and PAR-4, without clotting fibrinogen. These receptors also have a relevant role in endothelial cells, however, the interaction of PA-BJ with other membrane-bound or soluble targets is not known. Here we explored the activity of PA-BJ on endothelial cell receptor, cytoskeleton, and coagulation proteins in vitro, and show the degradation of fibrinogen and protein C, and the limited proteolysis of actin, EPCR, PAR-1, and thrombomodulin.

View Article and Find Full Text PDF

TDP-43 nuclear retention is antagonized by hypo-phosphorylation of its C-terminus in the cytoplasm.

Commun Biol

January 2025

Université Paris-Saclay, INSERM U1204, Univ Evry, Structure-Activité des Biomolécules Normales et Pathologiques (SABNP), Evry-Courcouronnes, France.

Protein aggregation is a hallmark of many neurodegenerative disorders, including amyotrophic lateral sclerosis (ALS), in which TDP-43, a nuclear RNA-binding protein, forms cytoplasmic inclusions. Here, we have developed a robust and automated method to assess protein self-assembly in the cytoplasm using microtubules as nanoplatforms. Importantly, we have analyzed specifically the self-assembly of full-length TDP-43 and its mRNA binding that are regulated by the phosphorylation of its self-adhesive C-terminus, which is the recipient of many pathological mutations.

View Article and Find Full Text PDF

Retinoids and retinoid-binding proteins: Unexpected roles in metabolic disease.

Curr Top Dev Biol

January 2025

Department of Pharmacology and Cleveland Center for Membrane and Structural Biology, Case Western Reserve University, Cleveland, OH, United States.

Alterations in tissue expression levels of both retinol-binding protein 2 (RBP2) and retinol-binding protein 4 (RBP4) have been associated with metabolic disease, specifically with obesity, glucose intolerance and hepatic steatosis. Our laboratories have shown that this involves novel pathways not previously considered as possible linkages between impaired retinoid metabolism and metabolic disease development. We have established both biochemically and structurally that RBP2 binds with very high affinity to very long-chain unsaturated 2-monoacylglycerols like the canonical endocannabinoid 2-arachidonoyl glycerol (2-AG) and other endocannabinoid-like substances.

View Article and Find Full Text PDF

rTMS improves cognitive function and its real-time and cumulative effect on neuronal excitability in aged mice.

Brain Res

January 2025

Key Laboratory of Digital Medical Engineering of Hebei Province, College of Electronic & Information Engineering, Hebei University, Baoding, Hebei 071002, PR China. Electronic address:

Repetitive transcranial magnetic stimulation (rTMS) is acknowledged for its critical role in modulating neuronal excitability and enhancing cognitive function. The dentate gyrus of the hippocampus is closely linked to cognitive processes; however, the precise mechanisms by which changes in its excitability influence cognition are not yet fully understood. This study aimed to elucidate the effects on granule cell excitability and the effects on cognition of high-frequency rTMS in naturally aging mice, as well as to investigate the potential interactions between these two factors.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!