Mitochondria are excitable organelles capable of generating and conveying electrical and calcium signals.

Cell

Department of Medical Biochemistry and Molecular Biology, Integrated Biological Systems Study Group, Victor Segalen-Bordeaux 2 University, France.

Published: June 1997

We report Ca2(+)-induced release of Ca2+ from mitochondria (mCICR) dependent on transitory opening of the permeability transition pore (PTP) operating in a low conductance mode. The Ca2+ fluxes taking place during mCICR are a direct consequence of the mitochondrial depolarization spike (mDPS) caused by PTP opening. Both mDPS and mCICR can propagate from one mitochondrion to another in vitro, generating traveling depolarization and Ca2+ waves. Mitochondria thus appear to be excitable organelles capable of generating and conveying electrical and Ca2+ signals. In living cells, mDPS/mCICR is triggered during IP3-induced Ca2+ mobilization and results in the amplification of the Ca2+ signals primarily emitted from the endoplasmic reticulum.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0092-8674(00)80301-3DOI Listing

Publication Analysis

Top Keywords

excitable organelles
8
organelles capable
8
capable generating
8
generating conveying
8
conveying electrical
8
ca2+ signals
8
ca2+
6
mitochondria excitable
4
electrical calcium
4
calcium signals
4

Similar Publications

This review comprehensively explores the critical role of calcium as an essential small-molecule biomessenger in skeletal muscle function. Calcium is vital for both regulating muscle excitation-contraction coupling and for the development, maintenance, and regeneration of muscle cells. The orchestrated release of calcium from the endoplasmic reticulum (ER) is mediated by receptors such as the ryanodine receptor (RYR) and inositol 1,4,5-trisphosphate receptor (IP3R), which is crucial for skeletal muscle contraction.

View Article and Find Full Text PDF

Hippocampal dendritic spines store-operated calcium entry and endoplasmic reticulum content is dynamic microtubule dependent.

Sci Rep

January 2025

Laboratory of Biomedical Imaging and Data Analysis, Institute of Biomedical Systems and Biotechnology, Peter the Great St. Petersburg Polytechnic University, Khlopina St. 11, St. Petersburg, Russia, 194021.

One of the mechanisms of calcium signalling in neurons is store-operated calcium entry (SOCE), which is activated when the calcium concentration in the smooth endoplasmic reticulum (ER) decreases and its protein-calcium sensor STIM (stromal interacting molecule) relocate to the endoplasmic reticulum and plasma membrane junctions, forms clusters and induces calcium entry. In electrically non-excitable cells, STIM1 is coupled with the positive end of a tubulin microtubule through interaction with EB1 (end-binding) protein, which controls its oligomerization, SOCE and participates in ER movement. STIM2 homologue, which is specific for mature hippocampal dendritic spines, is known to interact with EB3 protein, however, not much is known about the role of this interaction in STIM2 clustering or ER trafficking in neurons.

View Article and Find Full Text PDF

Endoplasmic Reticulum Calcium Signaling in Hippocampal Neurons.

Biomolecules

December 2024

Department of Biophysics of Ion Channels, Bogomoletz Institute of Physiology, NAS of Ukraine, 01024 Kyiv, Ukraine.

The endoplasmic reticulum (ER) is a key organelle in cellular homeostasis, regulating calcium levels and coordinating protein synthesis and folding. In neurons, the ER forms interconnected sheets and tubules that facilitate the propagation of calcium-based signals. Calcium plays a central role in the modulation and regulation of numerous functions in excitable cells.

View Article and Find Full Text PDF
Article Synopsis
  • Eukaryotic tRNA precursors need to be processed sequentially to become mature tRNAs, with ELAC2 being essential for processing both nucleus-encoded (nu-tRNAs) and mitochondria-encoded (mt-tRNAs) types.
  • ELAC2 can independently process nu-tRNAs, but for most mt-tRNAs, it requires the assistance of TRMT10C and SDR5C1, especially for those without a canonical structure.
  • The study reveals that while standard tRNAs are recognized through direct interactions between ELAC2 and the RNA, the processing of noncanonical mt-tRNAs relies on interactions between ELAC2 and the proteins TRMT10C and SDR5C1, highlighting an evolved mechanism for tRNA maturation in
View Article and Find Full Text PDF

Phasor-FSTM: a new paradigm for multicolor super-resolution imaging of living cells based on fluorescence modulation and lifetime multiplexing.

Light Sci Appl

January 2025

Center for Biomedical Optics and Photonics & College of Physics and Optoelectronic Engineering, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Shenzhen University, Shenzhen, 518060, China.

Multicolor microscopy and super-resolution optical microscopy are two widely used techniques that greatly enhance the ability to distinguish and resolve structures in cellular imaging. These methods have individually transformed cellular imaging by allowing detailed visualization of cellular and subcellular structures, as well as organelle interactions. However, integrating multicolor and super-resolution microscopy into a single method remains challenging due to issues like spectral overlap, crosstalk, photobleaching, phototoxicity, and technical complexity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!