Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Purpose: The relative contribution of the small and large intestine to paracellular absorption is a subject of some controversy. Direct comparison of paracellular permeability in different epithelia is complicated by variations in junctional density and/or the absorptive surface area.
Methods: This study used a combination of morphometric analyses and in vitro absorption studies to define permeability characteristics in relation to the amount of paracellular pathway present in rat ileum, colon and the model epithelium, Caco-2.
Results: Mucosal to serosal amplification was higher in ileum (3.9) than colon (1.9) or Caco-2 (1). Tight junctional density (lp) of ileal crypts was approximately 3 fold greater (91 m/cm2) than that measured in ileal villi, colonic surface and crypt cells or Caco-2 monolayers (34-37 m/cm2). However, when the relative contributions of the crypts and villi was taken into account there was no significant difference in the mean lp per mucosal area for the three epithelia studied. Using these data to correct for morphometric differences the permeabilities of a range of small hydrophilic molecules (atenolol, D-PheAsp and PEG oligomers MW 282-634) was measured. Permeability of rat ileum and colon were virtually identical for all compounds studied. In contrast, Caco-2 monolayers showed a significantly lower permeability than intestinal tissues with the difference increasing markedly with molecular size.
Conclusions: These studies suggest the importance of accounting for morphological variation when comparing the permeability characteristics of different epithelial systems.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1023/a:1012154506858 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!