There is ample experimental evidence that changes of earth-strength static magnetic fields, pulsed magnetic fields, or alternating electric fields (60 Hz) depress the nocturnally enhanced melatonin synthesis of the pineal gland of certain mammals. No data on the effects of high-frequency electromagnetic fields on melatonin synthesis is available. In the present study, exposure to 900 MHz electromagnetic fields [0.1 to 0.6 mW/cm2, approximately 0.06 to 0.36 W/kg specific absorption rate (SAR) in rats and 0.04 W/kg in Djungarian hamsters; both continuous and/or pulsed at 217 Hz, for 15 min to 6 h] at day or night had no notable short-term effect on pineal melatonin synthesis in male and female Sprague-Dawley rats and Djungarian hamsters. Pineal synaptic ribbon profile numbers (studied in rats only) were likewise not affected. The 900 MHz electromagnetic fields, unpulsed or pulsed at 217 Hz, as applied in the present study, have no short-term effect on the mammalian pineal gland.

Download full-text PDF

Source

Publication Analysis

Top Keywords

electromagnetic fields
16
pineal gland
12
melatonin synthesis
12
effects high-frequency
8
high-frequency electromagnetic
8
mammalian pineal
8
magnetic fields
8
900 mhz
8
mhz electromagnetic
8
djungarian hamsters
8

Similar Publications

Absorption-Emission Codes for Atomic and Molecular Quantum Information Platforms.

Phys Rev Lett

December 2024

University of Maryland, NIST, Joint Center for Quantum Information and Computer Science, /, College Park, Maryland 20742, USA.

Diatomic molecular codes [V. V. Albert, J.

View Article and Find Full Text PDF

In cardiovascular research, electromagnetic fields generated by Riga plates are utilized to study or manipulate blood flow dynamics, which is particularly crucial in developing treatments for conditions such as arterial plaque deposition and understanding blood behavior under varied flow conditions. This research predicts the flow patterns of blood enhanced with gold and maghemite nanoparticles (gold-maghemite/blood) in an electromagnetic microchannel influenced by Riga plates with a temperature gradient that decays exponentially, under sudden changes in pressure gradient. The flow modeling includes key physical influences like radiation heat emission and Darcy drag forces in porous media, with the flow mathematically represented through unsteady partial differential equations solved using the Laplace transform (LT) method.

View Article and Find Full Text PDF

Nanomaterials and clinical SERS technology: broad applications in disease diagnosis.

J Mater Chem B

January 2025

Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Laboratory of Advanced Theranostic Materials and Technology, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China.

The critical need for rapid cancer diagnosis and related illnesses is growing alongside the current healthcare challenges, unfavorable prognosis, and constraints in diagnostic timing. As a result, emphasis on surface-enhanced Raman spectroscopy (SERS) diagnostic methods, including both label-free and labelled approaches, holds significant promise in fields such as analytical chemistry, biomedical science, and physics, due to the user-friendly nature of SERS. Over time, the SERS detection sensitivity and specificity with nanostructured materials for SERS applications (NMs-SERS) in different media have been remarkable.

View Article and Find Full Text PDF

Effects of 60 Hz non-uniform electromagnetic fields (EMFs) on the tomato (cv. L-05) seed germination, photosynthesis, and seedling growth under salt stress and laboratory conditions were investigated. A previous trial investigated the impact of salt stress levels (0, 40, 60, 80, and 100 mM NaCl) on tomato seeds, and the 100 mM NaCl level was selected to study the effects of EMFs in attenuating salinity stress on germination, physiology, and growth of tomato seedlings.

View Article and Find Full Text PDF

Terahertz reconfigurable intelligent surfaces (RIS) stand out from conventional phased arrays thanks to their unique electromagnetic properties and intelligent interconnect paradigms. They are a vital technology for terahertz wireless communication and radar detection systems. Compared with 1-bit coding metasurfaces, 2-bit coding metasurfaces offer significant advantages such as single beam steering and reduced quantization errors.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!