Human obesity has an inherited component, but in contrast to rodent obesity, precise genetic defects have yet to be defined. A mutation of carboxypeptidase E (CPE), an enzyme active in the processing and sorting of prohormones, causes obesity in the fat/fat mouse. We have previously described a women with extreme childhood obesity (Fig. 1), abnormal glucose homeostasis, hypogonadotrophic hypogonadism, hypocortisolism and elevated plasma proinsulin and pro-opiomelanocortin (POMC) concentrations but a very low insulin level, suggestive of a defective prohormone processing by the endopeptidase, prohormone convertase 1 (PC1; ref. 4). We now report this proband to be a compound heterozygote for mutations in PC1. Gly-->Arg483 prevents processing of proPC1 and leads to its retention in the endoplasmic reticulum (ER). A-->C+4 of the intro-5 donor splice site causes skipping of exon 5 leading to loss of 26 residues, a frameshift and creation of a premature stop codon within the catalytic domain. PC1 acts proximally to CPE in the pathway of post-translational processing of prohormones and neuropeptides. In view of the similarity between the proband and the fat/fat mouse phenotype, we infer that molecular defects in prohormone conversion may represent a generic mechanism for obesity, common to humans and rodents.

Download full-text PDF

Source
http://dx.doi.org/10.1038/ng0797-303DOI Listing

Publication Analysis

Top Keywords

prohormone processing
8
prohormone convertase
8
fat/fat mouse
8
obesity
6
prohormone
5
processing
5
obesity impaired
4
impaired prohormone
4
processing associated
4
associated mutations
4

Similar Publications

Ablation of PC1/3 in POMC-Expressing Tissues but Not in Immune Cells Induces Sepsis Hypersensitivity.

J Endocr Soc

September 2024

Clinic of Endocrinology, Diabetes and Metabolism, University Hospital Basel, 4031 Basel, Switzerland.

Prohormone convertase 1/3 (PC1/3) is an endopeptidase required for the processing of neuropeptide and endocrine peptide precursors; it is expressed in neuroendocrine tissues as well as in immune cells. In response to endotoxemia, global PC1/3 knockout mice mount a cytokine storm and die rapidly. Further, immune cells isolated from these mice have a pro-inflammatory signature, suggesting that PC1/3 activates an unknown anti-inflammatory peptide precursor in immune cells.

View Article and Find Full Text PDF

IgA nephropathy (IgAN) is the most common primary glomerular disease. Endothelin-1 (ET-1) is one of the strongest vasoconstrictor materials in the blood. The N-terminal prohormone of brain natriuretic peptide (NT-proBNP) is associated with renal function and poor outcomes in chronic kidney disease (CKD).

View Article and Find Full Text PDF
Article Synopsis
  • This study investigates how the expression of prohormone convertase 1/3 (PC1/3), an enzyme crucial for processing peptide hormones, is affected in islet cells during the progression of type 1 and type 2 diabetes.
  • Researchers analyzed pancreatic samples from a diverse group of 54 donors, using immunostaining for detailed examination of PC1/3 in various islet cells at different diabetes stages.
  • The results revealed significant changes in islet cell morphology and reduced co-localization of PC1/3 with insulin in type 1 diabetes, while an increase in glucagon and somatostatin in these islets was also noted.
View Article and Find Full Text PDF

Stress, such as neuroexcitotoxicity and oxidative stress, as well as traumatic brain injury, will result in neurodegeneration. Deciphering the mechanisms underlying neuronal cell death will facilitate the development of drugs that can promote neuronal survival and repair through neurogenesis. Many growth and trophic factors, including transforming growth factors (TGFs), insulin-like growth factors (IGFs), epidermal growth factor (EGF), fibroblast growth factor 2 (FGF2), and brain-derived neurotrophic factor (BDNF), are known to play a role in neuroprotection and neurogenesis.

View Article and Find Full Text PDF

Fam3a-mediated prohormone convertase switch in α-cells regulates pancreatic GLP-1 production in an Nr4a2-Foxa2-dependent manner.

Metabolism

January 2025

Department of Endocrinology and Metabolism, State Key Laboratory of Female Fertility Promotion, Peking University Third Hospital, Beijing 100191, China. Electronic address:

Article Synopsis
  • - The study explores the role of Fam3a in pancreatic α-cell function, particularly its impact on glucagon and GLP-1 levels, using both global and α-cell-specific knockout models.
  • - Researchers conducted experiments on αTC1.9 cells to determine how Fam3a influences the expression of PCSK1, which is crucial for converting proglucagon into GLP-1, revealing a regulatory pathway involving the proteins Nr4a2 and Foxa2.
  • - Results indicated that Fam3a knockout enhanced GLP-1 levels in mice, while human islet data suggested an inverse relationship between FAM3A and PCSK1, highlighting Fam3a's potential role as a negative regulator of GL
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!