Cytosolic extracts of the cyanobacterium Anacystis nidulans exhibit both catalase and o-dianisidine peroxidase activity. Native polyacrylamide gel electrophoresis demonstrates one distinct enzyme, which has been purified to essential homogeneity and found to be composed of two identical subunits of equal size (80.5 kDa). The isoelectric point is at pH 4.7. It is a very efficient catalase with a broad pH optimum between 6.5 and 7.5 and a Km for H2O2 of 4.3 mM, a calculated turnover number of 7200 s(-1), and an overall-rate constant of 3.5 x 10(6) M(-1) s(-1). The behaviour of this protoheme-enzyme is typical of the class of prokaryotic catalase-peroxidases, which is sensitive to cyanide (Ki = 27.2 microM) and insensitive to the eukaryotic catalase inhibitor 3-amino-1,2,4-triazole. The enzyme accepts electrons from o-dianisidine, but not from ascorbate, glutathione, and NADH. With hydrogen peroxide in steady-state conditions the enzyme is mainly in the ferric state indicating that Compound I is much faster reduced by H2O2 than it is formed. The native enzyme is in the high-spin state, which is transformed to low-spin upon addition of cyanide. With peroxoacetic acid Compound I is formed at a rate of 5.9 x 10(4) M(-1) s(-1) at pH 7.0 and 25 degrees C with about 50% hypochromicity, a Soret-maximum at 405 nm and isosbestic points at 354 and 427 nm.

Download full-text PDF

Source
http://dx.doi.org/10.1006/bbrc.1997.6847DOI Listing

Publication Analysis

Top Keywords

cyanobacterium anacystis
8
anacystis nidulans
8
m-1 s-1
8
purification characterization
4
characterization homodimeric
4
homodimeric catalase-peroxidase
4
catalase-peroxidase cyanobacterium
4
nidulans cytosolic
4
cytosolic extracts
4
extracts cyanobacterium
4

Similar Publications

Cyanobacteria and Chloroflexota cooperate to structure light-responsive biofilms.

Proc Natl Acad Sci U S A

February 2025

Department of Biosphere Sciences and Engineering, Carnegie Institution for Science, Stanford, CA 94305.

Microbial mats are stratified communities often dominated by unicellular and filamentous phototrophs within an exopolymer matrix. It is challenging to quantify the dynamic responses of community members in situ as they experience steep gradients and rapid fluctuations of light. To address this, we developed a binary consortium using two representative isolates from hot spring mats: the unicellular oxygenic phototrophic cyanobacterium OS-B' (Syn OS-B') and the filamentous anoxygenic phototroph MS-CIW-1 (Chfl MS-1).

View Article and Find Full Text PDF

Expression and characterization of the complete cyanophage genome PP in the heterologous host Synechococcus elongatus PCC 7942.

Int J Biol Macromol

January 2025

School of Chemical Engineering & Technology, Tianjin University, Tianjin 300072, PR China; Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, PR China; Frontier Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300072, PR China; State Key Laboratory of Synthetic Biology, Tianjin University, Tianjin, 300072, PR China. Electronic address:

In this study, we successfully integrated the full-length genome of the cyanophage PP into the non-host cyanobacterium Synechococcus elongatus PCC 7942, facilitated by conjugation via Escherichia coli. To address the challenge posed by the toxic open reading frames (ORFs) of PP in E. coli, we first identified and characterized three toxic ORFs.

View Article and Find Full Text PDF

Introduction of acetyl-phosphate bypass and increased culture temperatures enhanced growth-coupled poly-hydroxybutyrate production in the marine cyanobacterium Synechococcus sp. PCC7002.

Metab Eng

January 2025

Engineering Biology Research Center, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan; Graduate School of Science, Technology, and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe, Hyogo, 657-8501, Japan; Research Center for Sustainable Resource Science, RIKEN, 1-7-22 Suehiro, Tsurumi, Yokohama, Kanagawa, 230-0045, Japan. Electronic address:

Polyhydroxyalkanoate (PHA) is an attractive bio-degradable plastic alternative to petrochemical plastics. Photosynthetic cyanobacteria accumulate biomass by fixing atmospheric CO, making them promising hosts for sustainable PHA production. Conventional PHA production in cyanobacteria requires prolonged cultivation under nutrient limitation to accumulate cellular PHA.

View Article and Find Full Text PDF

Molecular glue for phycobilisome attachment to photosystem II in sp. PCC 7002.

Proc Natl Acad Sci U S A

January 2025

State Key Laboratory of Protein and Plant Genetic Engineering, School of Life Science, Peking University, Beijing 100871, People's Republic of China.

Phycobilisomes (PBS) are the major photosynthetic light-harvesting complexes in cyanobacteria and red algae. While the structures of PBS have been determined in atomic resolutions, how PBS are attached to the reaction centers of photosystems remains less clear. Here, we report that a linker protein (LcpA) is required for the attachment of PBS to photosystem II (PSII) in the cyanobacterium sp.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!